Extension: Research report on Natural Language Processor
(NLP) for Khmer TTS

Abstract

This report is an extension of phase 1.2 research report on natural language processing for
Khmer Text-To-Speech System. The study includes text to sound conversion, text normalization,
syllabification algorithm and diphone database generation module. In text to sound conversion
section, we present some statistical based text to sound conversion for Khmer language and also
some information in Lexicon. In text normalization; we have identified rules to transform non
standard word such as year, number, date and abbreviation to full text. The implementation to
test whether these rules can cover all non standard words is also presented. For syllabification, a
system created to evaluate the syllabification algorithm is presented in this section. The next
section of this report will be a presentation of the diphone database module and the last one will
be the general conclusion of this research activities.

1. Introduction

There are two main modules for Text-To-Speech System: Natural Language Processing (NLP)
and Digital Signal Processing (DSP). The NLP module converts words in input text to their
corresponding narrowed phonetic transcriptions. The DSP module takes the words in narrowed
phonetic transcription and converts them into speech wave form. Before the NLP can start the
study of phonetic and phonological need to be done.

The current phase (2.1) is the continuation of phase 1.2 that is about natural language processor.
The activities in this phase include the study in detail of text normalization, text to sound
conversion by using the statistical approach, evaluation of the syllabification algorithm and
diphone database module.

II. Text to Sound Conversion
II.1. Introduction

Speech synthesis systems use two basic approaches to determine the pronunciation of a
word based on its spelling, a process which is often called text-to-phoneme, text-to-sound
or grapheme-to-phoneme conversion. The simplest approach to text-to-phoneme
conversion is the dictionary-based approach, where a large dictionary, also called lexicon,
containing all the words of a language and their correct pronunciations is stored by the
program. Determining the correct pronunciation of each word is a matter of looking up
each word in the dictionary and replacing the spelling with the pronunciation specified in
the dictionary. The other approach is rule-based, in which pronunciation rules are applied
to words to determine their pronunciations based on their spellings.

Each approach has advantages and drawbacks. The dictionary-based approach is quick
and accurate, but completely fails if it is given a word which is not in its dictionary. As

dictionary size grows, so too does the memory space requirements of the synthesis
system. On the other hand, the rule-based approach works on any input, but the
complexity of the rules grows substantially as the system takes into account irregular
spellings or pronunciations. As a result, nearly all speech synthesis systems use a
combination of these approaches.

Some languages, like Spanish, have a very regular writing system, and the prediction of
the pronunciation of words based on their spellings is quite successful. Speech synthesis
systems for such languages often use the rule-based method extensively, resorting to
dictionaries only for those few words, like foreign names and borrowings, whose
pronunciations are not obvious from their spellings. On the other hand, speech synthesis
systems for languages like English, which have extremely irregular spelling systems, are
more likely to rely on dictionaries, and to use rule-based methods only for unusual words,
or words that aren't in their dictionaries. [1]

Like English, our future Khmer Text To Speech System will rely lexicon and use rule-
based methods only for unusual words, or words that are not present in the lexicon.

Here we describe the process of building letter to sound model for Khmer language from
Khmer pronunciation lexicon using Festival.

I1.2. Background

The Cambodian script (called Khmer letters) are all probably derived from various forms of the
ancient Brahmi script of South India. The Cambodian script has symbols for thirty-three
consonants, twenty-four dependent vowels, twelve independent vowels, and several diacritic
symbols. Most consonants have reduced or modified forms, called sub-consonants or subscript,
when they occur as the second member of a consonant cluster. Vowels may be written before,
after, over, or under a consonant symbol. [1]

The consonants are divided into 2 groups or series: d-series and O-series (see fig. 1 for the group
of consonants along with their pronunciation). Most of consonants (in d-series resp. O-series)
have their counterparts (in J-series resp. d-series). For consonants in one group that don't have
their counterpart in another group, cllliacritic mark ¢ (MUUSIKATOAN) and D (TRIISAP) are
used to produce their counterpart. {: changes the consonant to d-series while i changes the
consonant to O-series. Among the 24 vowels there is 1 abstract (inherent) vowel which is
embedded in a consonant. The pronunciation of a vowel, including the inherent vowel, is
determined by the series of the initial consonant or consonant cluster that it accompanies. Khmer
syllable in written form can contain 1 or 2 vowels. In the later case, last vowel is a vowel that has
embedded consonant (see fig. 2 for the list of vowels and sequences of vowels that come together
along with their pronunciation for each group). Independent vowels incorporate both an initial
consonant and a vowel (see fig. 3 for list of independent vowels along with their pronunciations).

Consonants and subscripts

Vowels

Independent

Letter

a-series

D-series

Q
o
=
2]

Sub.

Sub.

Sound

Letter

Sound

Letter

Sound

a-series

D-series

HI

ra:

Inherent
vowel

a:

a:

B

e

e D

1:9

aj

rej

a

v}

?u

a

[\

?uU:

EEEZFESD?Q
2
g,

?0:W

[t}

P4

= =y M~ A e R = N

[y

s | %3

=3

J:0

u:o

u:o

g

a:9

—

e

e

7aj

1:3

1:3

?a:0

= | o

c:

?a:0

ag

Q| & | AT | IV LD |3 |G | | 8

Paw

=

3]

—

a.o

aw

ow

om

um

am

um

am

oam

ah

€ah

:n S a HL:LGQ an: E: G::: c;: =t c: hal} g
o

I}%ggag""‘a"”EGZDD?CBCQZ/D
e,

oo

eh

ih

Figure 1. Text to sound mapping for
consonants and subscripts

oo

oh

th

oh

uh

SEREN

eh

ih

52 e

ah

ush

Figure 2. Text to sound mapping for

vowels and sequence of vowels

Figure 3.

Text to sound

mapping for independent

vowels

IL. 3. Letter to Sound (LTS) Building Process

The process requires the installation of Festival, Speech Tools and Festvox. And if the lexicon is
in Unicode uft8 encoding, the latest version of Festival and Speech Tools from the website http://
www.speech.cs.cmu.edu/15-492/assignments/hw2/packed/ (we have accessed this website on

26/03/2009) are required to do the preprocessing step (setup script). At the time of writing,
Festival at the official website does not have the the correct setup script for Unicode utf8.
Before proceeding, we need to setup the 2 environment variables ESTDIR and FESTVOXDIR to
the Speech Tools and Festvox folder respectively.

export ESTDIR=/home/seangmeng/soft/festival/speech_tools

export FESTVOXDIR=/home/seangmeng/soft/festival/festvox

Building letter to sound model in Festival involves the following steps:
Preprocessing lexicon

Defining the set of allowable pairing of letters to phones

Constructing the probabilities of each letter/phone pair

Aligning letters to an equal set of phones/_epsilons_

Split the data into training set and test set

Building CART models for predicting phone from letters (and context)

I1.3.1.

Preprocessing lexicon

The first step is to preprocess the lexicon to suit the training process.
Add some non sense words

o

As mentioned in section 2, for consonants in a group that do not have their
counterpart in another group, the diacritic marks “ and 7 are used to change the
group of those consonants to produce their counterpart. Some forms of C'V, where C
is a consonant followed by SorTand Visa vowel, do not appear in the lexicon. So
we add some non sense words containing all possible forms of C'V so that the model
can predict words containing “ and 7 more accurately.

In our lexicon, only one word contains the independent vowel U. If this word is
removed from the training set, then the model will not know how to pronounce this
vowel. So we add a few non sense words containing the independent vowel U to
make sure that this vowel exists in the training set.

Remove all words containing diacritic mark LEK TOO J

o

Diacritic mark LEK TOO J is used to repeat the word or phrase that precedes it. In
fact this diacritic mark are treated in Text Normalization phase. So we do not need to
treat it here.

For lexicon in Unicode uft8 encoding use setup script

$FESTVOXDIR/src/lts/build_lts setup lex_file.scm utf8, where lex_file.scm is the
file containing the compiled lexicon with the entry in the following format

("LLLLLL" nil (((p p) 0)((p p p) 0) ((p p) 0)))
Example: ("fU1FU1" nil (((s a:) 0) (1 a:) 1))

After preprocessing, the output will look like this:
(C"egn, At "R, A" nil (sa: lar))

http://www.speech.cs.cmu.edu/15-492/assignments/hw2/packed/
http://www.speech.cs.cmu.edu/15-492/assignments/hw2/packed/

I1.3.2. Defining the set of allowable pairing of letters to phones

This step is to define all possible pairings of letters to phones. This definition is essential so that
orthography can be aligned to transcriptions and ultimately probabilities can be extracted for
each letter-to-phone pairing. It’s worth noting that the set of allowable letter to phone mappings
is irrespective of context.[2]

The last version of festival and speech tools, as mention above, has script to create allowable
paring of letters to phones automatically by running the script:

SFESTVOXDIR/src/lts/build_lts make_allowables

But the produced allowable is not good. One letter can have so many possible sound. And using
this allowable make the subsequent tasks very long time to complete. It even shows error message
“out of memory”. So we define the set of allowable pairing ourself. Initially this

file should be of the form:

(require 'Its_build)
(% %stack-limit 10000000 nil)
(setq allowables
(("T" _epsilon_)
("8" _epsilon_)

(” TR0 1" _epsilon_)
(##)))

where each letter can at least map to nothing. This set of allowables can then be modified by hand
and built incrementally by running festival with the file and typing the following:

SFESTVOXDIR/src/lts/build_Its cummulate

This will prints out any lexical entries from the training set that couldn’t be aligned, illustrating
which new letter to phone mappings should be added to the allowable ones. To allow multi-phone
mappings where a letter gets paired with more than one phone, the syntax “phonel-phone2” is
used. Of course, there are many entries such as words with irregular pronunciation which are
contained in the training set and can never be aligned with their pronunciations.[2]

For phonetic symbols, we used ASCII representation of IPA. The following figures show the
mapping between IPA and ASCII for Khmer phonetic that we use in Festival.

IPA kiglc/n/d/ t/ n|b|p/m|j|r|1|w|s|h]Jk"Cc

ASCII |k [N|{c|n|d|t n | b | p|m|j|r | 1|w|s|h]/lkh|ch

th

Figure 4. IPA to ASCII Mapping for consonants

IPA a/o2|ale|a|®e|o|luli|i1]|3

ASCII A/ O|ja|le|@ W|o | ujix| i Vx/e E
Figure 5. IPA to ASCII Mapping for vowels

~0
m

In Khmer language, for words especially pali words, one letter can be mapped to a sound with
three phones for example in the word Gi%1 [c a 2. r 8 t] (character), the consonant GG maps to [¢
a ?]. The current version of Festival does not support this. We can put this mapping, but the
alignment process always fails. Our solution is as follow: we treat the combination of the two
phones for example [a] and [7] as one phone [a?]. After the letter to sound conversion, we rewrite
the phone [a?] into two phones [a] and [?].

Here is the allowable pairing of letters to phones that we have defined:
(require 'Its_build)

(% %stack-limit 10000000 nil)
(setq allowables '(

##)
("!" _epsilon_)
("-"_epsilon_)

("n" _epsilon_ k k-A: k-A k-O: k-O ? ¢ k-a? kh k-a k-Ea? k-Ea k-u k-o0a)

("8" _epsilon_ kh kh-A: kh-A k kh-a kh-a? kh-Ea? kh-Ea kh-u kh-oa)

("f" _epsilon_ k k-A: k-A k-O: k-O k-Ea? k-a k-a? kh k-Ea k-u k-oa)

("W" _epsilon_ kh kh-A: kh-A kh-O: kh-O k kh-Ea? kh-a? kh-a kh-Ea kh-u kh-oa)
("#1" _epsilon_ N N-A: N-A N-O: N-O n. N-Ea? N-a? N-Ea N-a N-u N-o0a)

("G" _epsilon_c c-A: c-A c-O: c-O c-a? c-a c-Ea? ch c-Ea c-u c-o0a)

("B" _epsilon_ ch ch-A: ch-A ch-O: ch-O c ch-a? ch-a ch-Ea? ch-Ea ch-u ch-oa)
("0" _epsilon_ ¢ c-A: ¢c-A ¢-O: ¢-O c-a? c-a c-Ea? ch c-Ea c-u c-o0a)

("PWS" _epsilon_ ch ch-A: ch-A ch-O: ch-O c ch-a? ch-a ch-Ea? ch-Ea ch-u ch-oa)
("fN" _epsilon_n. n.-A: n.-A n.-O: n.-O n.-Ea? n.-a n.-a? n.-Ea n.-u n.-oa)

("H" _epsilon_d d-A: d-A d-O: d-O d-a? d-a d-Ea? d-Ea d-u d-oa)

("U" _epsilon_ th th-A: th-A th-O: th-O t th-a? th-a th-Ea? th-Ea th-u th-oa)

("8" _epsilon_d d-A: d-A d-O: d-O d-Ea? d-a d-a? d-Ea d-u d-oa)

("F" _epsilon_ th th-A: th-A th-O: th-O t th-Ea? th-a? th-Ea th-a th-u th-oa)
("AN" _epsilon_ n n-A: n-A n-O: n-O n-a? n-a n-Ea? n-Ea n-u n-oa)

("B" _epsilon_ tt-A: t-A t-O: t-O t-a? t-a t-Ea? th t-Ea t-u t-oa d)

("G" _epsilon_ th th-A: th-A th-O: th-O t th-a? th-a th-Ea? th-Ea th-u th-oa)

("G" _epsilon_ tt-A: t-A t-O: t-O t-Ea? t-a t-a? th t-Ea t-u t-oa)

("II" _epsilon_ th th-A: th-A th-O: th-O t th-Ea? th-a? th-Ea th-a th-u th-oa)

("8" _epsilon_n n-A: n-A n-O: n-O n-Ea? n-a? n-a n-Ea n-Ea? n-u n-oa)

("U" _epsilon_ b b-A: b-A b-O: b-O p-A: p-A p-O: p-O p p-a? p-a b-a? b-a p-Ea? b-Ea? p-Ea b-Ea b-u b-
oa)

("t4" _epsilon_ ph ph-A: ph-A ph-O: ph-O p ph-a? ph-Ea? p ph-a ph-Ea ph-u ph-oa)
("A" _epsilon_ p p-A: p-A p-O: p-O p-oa p-Ea? p-a? ph p-a p-Ea p-u p-oa)

("f" _epsilon_ ph ph-A: ph-A ph-O: ph-O p ph-Ea? ph-a? ph-Ea ph-a ph-u ph-oa)
("g" _epsilon_ m m-A: m-A m-O: m-O m-Ea? m-a? m-Ea m-a m-u m-oa)

(""" _epsilon_jj-O:j-O j-A: j-Aj-a? j-a j-Ea? j-Ea j-u j-oa)

("1" _epsilon_rr-A: r-A r-O: r-O r-Ea? r-ar-a? r-Ear-u I r-oa)

("PU" _epsilon_11-A: 1-A 1-O: 1-O 1-11-a? I-Ea? I-Ea l-a I-u 1-0a)

("1" _epsilon_ w w-A: w-A w-O: w-O w-Ea? w-a? w-Ea w-a w-u w-oa p p-Ea p-a p-Ea? p-a?)
("BJ" _epsilon_ s s-A: s-A s-O: s-O h s-a s-a? s-Ea? s-Ea s-u s-oa h-s)

("UN" _epsilon_ h h-A: h-A h-O: h-O h-a? h-a h-Ea? h-Ea h-u h-oa)

" QJ" _epsilon_11-A: 1-A 1-O: 1-O 1-a I-a? 1-Ea? 1-Ea I-u l-0a)

("H" _epsilon_? ?7-A: 7-A 7-O: 7-O ?7-a? 7-Ea? ?-a ?-Ea ?-u ?-o0a)

("8" _epsilon_?-e ?-i)

("RJ" _epsilon_ ?-e-j 2-i:)

("8" _epsilon_ 7-u)

("8" _epsilon_ ?-u:)

("U" _epsilon_ r-ix)

("U" _epsilon_ r-ix:)

("R" _epsilon_1-ix)

("R" _epsilon_ l-ix:)

("R" _epsilon_ ?-aE)

("g" _epsilon_ ?-a-j)

("8" _epsilon_ ?-ao)

("G _epsilon_ ?-a-w)

(""" _epsilon_a: ai@ Eaoa)

_epsilon_eie: @ ix)

_epsilon_e-ji: @-j)

epsilon @ ix)

"o _epsilon_ W W:ix: W:)

":" _epsilon_ou)

_epsilon_Oou: 0)

_epsilon_u@)

_epsilon_a@ @:)

epsilon ix@)

_epsilon_iVx)
_epsilon_e.:e:e.e aE)

+" _epsilon_aEE:iE)

" _epsilon_ a-j e.-j)
_epsilon_ao 0: u@)
_epsilon_a-w @-w)

epsilon a-mu-mm)

" 2 " _epsilon_a-h Ea-hh)

":" _epsilon_a? Ea? Ea-h h)

e _epsilon_)

epsilon)

epsilon)

epsilon)

epsilon)

epsilon)

epsilon)

epsilon)

epsilon)

("TJ " _epsilon_)

("TPU1" _epsilon_1-a?)

("" _epsilon_)

(" _epsilon_)))

n»u

n»u

n

E

.vuu—vv—'v—'u'v—vbv—vv—vv—vv—'

_)__)"

n "

n ol
ws N

n»u

"en

(
("g
("
(
("
("
("
(
(
(
(
(
(
(
(
("
(
(
(
("
(e
("
("
("
(
("
(

I1.3.3. Constructing the probabilities of each letter/phone pair

Once the number of failed alignments is satisfactorily low, SFESTVOXDIR/src/lts/build_lts
cummulate can be allowed to run to completion. This permits the function to count how many
times each letter-to-phone mapping occurs in allowable alignments, thus supplying the necessary
information for calculating probabilities. The script $FESTVOXDIR/src/lts/build_Its cummulate
also calculates the probabilities and save them to a file.

I1.3.4. Aligning letters to an equal set of phones/_epsilons_

The next step is to find the best alignment of the number of letters to an equally long string of
phones, multi-phones and epsilons. This is done by executing the following commands:

SFESTVOXDIR/src/lts/build_lts align
Entries which look like the following will be produced in the file lex.align.
(C"A""A" A" "R)nilk-Arka:t)
The above script also builds the feature vectors necessary for the last step.
I1.3.5. Split the data into training set and test set
The following command is used to divide the data generated so far into training set and test set.
SFESTVOXDIR/src/lts/build_lIts traintest
This command puts every tenth entry into the test set and everything else in the training set.
I1.3.6. Building CART models for predicting phone from letters (and context)

The final step in the LTS training process is the building of CART trees which will be used to
predict the pronunciation of any words not found through lexicon lookup. The program wagon
which is provided by the EST, can be used to automatically build suitable trees for such a task.
Classification trees will be used in this case, where the features considered will be names of items
in the Segment relation (four phone names to the left and right of current segment will be
considered). In order to build the trees, features must be fed in a format compatible with wagon.
Files known as feature vectors are already built in step 4.

The model can be build by running the following command:
SFESTVOXDIR/src/lts/build_Its build

Once the models are created they must be collected together into a single list structure.
The trees generated by wagon contain fully probability distributions at each leaf, at
this time this information can be removed as only the most probable will actually be
predicted. This substantially reduces the size of the tress.

This task can be carried out using the following command:

SFESTVOXDIR/src/lts/build_lts merge
This will produce a file containing a set!

for the given variable name to an assoc list of letter to trained tree
which can be used in Festival to predict pronunciation of words not found in lexicon.

I1.4. Result

Training from Train Set All Data

. All Data: 17816 words
Testing from Test Set | All Data |Test Set |All Data Train Set: 16035 words
Phone accuracy 92.01% 94.78% 95.18% 95.20% Test Set: 1781 words
Word accuracy 63.11% |[74.75% |75.69% |76.40%

Figure 6. Accuracy of LTS Model

From the above figure, we see that the model trained from all data give better result because the
test set includes in the training data. We decide to use LTS model trained from all data in our
Khmer TTS.

II.5. Conclusion

We have described the process of building letter to sound model in Festival. After preprocessing,
the lexicon used to build the model contains 17816 words. The accuracy of the resulted model
trained from all data and tested on all data is 76.40%.

III. Information in the lexicon

Our pronunciation lexicon is based on official Khmer dictionary (Chuon Nat dictionary). The
entries have already been collected by PAN Cambodia team in phase I. So we just take those
entries (18632 words) and add the following information: sound, sound2, sound_type, ipa as
detailed below.
® sound: word pronunciation using script not IPA that is obvious to pronounce.
® sound?: alternative pronunciation. In case of there 2 possible pronunciations, sound store
the most used one.
® soud_type: type of the pronunciation. It can be regular, irregular and change.
o regular: regular or normal pronunciation. The word follows simple pronunciation
rules.
O irregular: irregular or abnormal pronunciation. The word does not follow simple
pronunciation rules.
O change: group change in pronunciation. The word follows simple pronunciation
rules, but there is group change (see report on letter to sound conversion section 3.2).
® ipa: word pronunciation using IPA.

sound, which contains word pronunciation using script (not IPA), is used to facilitate the data
entry process. The pronunciation in form of IPA can be derived automatically from it. Inputing
pronunciation in script form is much easier than doing the same thing using IPA, especially for
people who are not familiar with phonetic or IPA.

sound_type information can be used to create statistical model to predict group change. The group
change model can then be integrated with rule-based method for letter to sound conversion.

ipa, which can be derived automatically from sound, is used to store pronunciation of word in
form of IPA. It is the one that will be actually used in our Khmer Text To Speech.

Note that all the pronunciations includes syllable boundary.

IIL.1. Building process

To facilitate data entry, we develop a simple web-based application using PHP / MySQL. This
application allows multiple users to input data at the same time without conflict (1 entry can not
be entered by more than one user).

We have 3 steps to follow in order to build our pronunciation lexicon. The first step is to input
sound (the word pronunciation using script), sound2 (alternative pronunciation) and sound_type
(regular, irregular or change). This step can be done even by people who do not have knowledge
in phonetic. For word with complex pronunciation, we use electronic version of Chuon Nat
dictionary developed by Buddhist Institute to check the pronunciation.

After finishing the first step, we can do the second step which consists of generating
pronunciation in IPA from the pronunciation in script. We wrote a program in Python to do this
task.

The last step is for quality assurance. For this step, we have a linguist to verify the data entered in
step 1 and the pronunciation in IPA generated automatically by the program in step 2. As we do
not have much resource, only 1 linguist does the verification.

II1.2. Conclusion

We have described the building process of our pronunciation lexicon. The lexicon is based on
Chuon Nat dictionary which contains about 20K words. The lexicon includes information
concerning group change in word which can be used to build probabilistic model to predict group
change. This model can be added to rule-based method for letter to sound conversion to improve
its accuracy.

IIL3. Future work
Our lexicon is based on official Khmer dictionary which are not well updated. Many new words
do not appear in the dictionary. Our future work is to collect the words which are not in the

dictionary from text corpus (that PAN Cambodia team has already collected) and add those words
in our lexicon.

IV. Text normalization
IV.1. Introduction

This report introduces the algorithms of how the digits’ sequence of Khmer script is read.
It is a part of text normalization to extend the nonsense word (NSW) in to reading word.

IV.2. Methodology

khmer_digits:[fgSlj, ’51 [EJ", q i, ﬁ

us
Khmer_wo_digits=[R U, [H, ABRSU, T80
IUR AU, 1A R0 U]

bis

Note: the table of the index is from 0
Figure 1: variable of khmer number

eight_digits_expands algorithms
Input:
0 digits: String of Khmer digits and its length is smaller then 9
Output:

0 toReturn: String of Khmer digits in reading
Local variable:

0 index_i: integer, index are used in loop

Initialize toReturn = <’
Initialize index i =0

For index_i = I To length(digits) Do
If (digits[index_i] <> ‘0’)
Begin
If (index_i == 2) Then
toReturn = khmer_two_digits[toInteger(digits[index_i])] + toReturn

Else
toReturn = khmer_digits[tolnteger(digits[index_i])] +
khmer_level_number(length(digits) - index_i] + toReturn
End;
End For;

Resutl: Every digit is read according to its digit’s name and its level. The digit ‘0’ is not read.
This function can only read the Khmer digits less then 9 digits.
Example:

O m’
9lam - sReuR] Ujii‘;fﬁ (one hundred and twenty three)
khmer_number expands algorithms
Input:
0 digits: String of Khmer digits
Output:
0 toReturn: String of Khmer digits in reading
Local variable:

Initialize: tmp = digits
If ((length(tmp) == 1) and (tmp[0]= ‘0’)) Then
toReturn = khmer_digits[0]
Else
Begin
While (length(tmp) >= 9) Do
Begin
toReturn = “I1 7 +eight_digits_expands(subString(tmp, length(tmp) — 7
length(tmp))) + toReturn;
tmp = subString(tmp, 0, length(tmp) — 7);
End While;
If (length(tmp) != 0) Then
toReturn = eight_digits_expands(tmp) + toReturn;
End If;

Result: 1f the number of the digits is greater then 8, it will cut in to N parts of 7 digits and it add
the word [T at the end of the first N-1 parts.

Example:
900000000 * LUIMI (100000000)

e Implementation

The algorithms have been implemented in Java Language and the accuracy is good. Now we
are implementing in scheme language.

V. Syllabification

V.1. Introduction

In the previous report, we presented the algorithm and the test done on Java for the
syllabification. However, the data used for the previous experimentation is not good
enough for the evaluation. Thus, in this report, we will present about our experimentation
and the result of the syllabification.

V.2. Syllabification test system

Our system used to test the syllabification algorithm to see its accuracy is written in Java
which connects to the database system MySQL. The system can be used to syllabify one
phonetic word or can connect to the database system to retrieve the words and syllabify
them. Moreover, we store some necessary information needed for the syllabification, this
time, in a normal text file.

(g: Syllabification s W

Word in IPA 0K

[] Syllahify words in database.

Result of the syllabification

Figure 1: Main interface of syllabification test system

Description

Control name Description

Textbox Input the text for the syllabification.

Button To start syllabifying.

Checkbox Check: the syllabification will be done on data read from
MySQL database.
Uncheck: syllabify the word input in text box.

TextArea Display the syllabification result.

Data files

As mentioned earlier, we store all necessary information for the syllabification such as,

consonants, vowels, and the clustering consonants, in text file. Here, below, we present
them.

t syllable_consonants.csv - Blot- syllable”clusters.cev = Bloc=nofes E@E
Fichier Edition Format Affichage 7 Fichler Edition Format Affichage 2 Fichier Edition Fomat Affichage 2
tts_consonants bl }ts_vowe\s L tts_consonants_cluster i
; ; ;
1k:0; 15051 Tigpikhp
2;0;0%kn 2a0 24kb:

30 35 Skt
4ux0ch 4 4kd;

50);1; 5@ sickhc
851; Bl Bignkhn
70 - T 7; r

Lni, Col Ln 1, Col Ln 7, Cal

Figure 2: The content of consonant file, vowel file, and consonant cluster.

V.2. Result & conclusion

In this experimentation, we use our lexicon which contains 18632 words storing in
MySQL server. To evaluate the result of the syllabification, we compare the syllabified
word given by our system with the manually syllabified words stored in our lexicon. Our
system produces 17 997 words correct which equals to 96.59%. However, we consider
that our algorithm provides high-accuracy and acceptable result because the problem
causing incorrectness of the syllabification comes from: - misspell of word in IPA, and
some incoherence uses of the IPA.

VI. Word segmentation technique
VL.1. Introduction

Almost all techniques to statistical language processing, including speech recognition,
machine translation and information retrieval, are based on words. Although word-based
approaches work very well for western languages, where words are well defined, it is
difficult to apply to Khmer. Khmer sentences are written as characters strings with no
spaces between words. Space is inserted in the sentence under some circumstance such as
breathing break in reading, number break etc... To human perception, it is very easy to
judge the break point of the word in the sentence, but it is very difficult for the computer
to identify the fact. So far, no research has been conducted on the topic for Khmer
language.

In this report, we present the technique of word segmentation for Khmer and the
improvement of its defined algorithms as our work is based on the previous research
result.
Problems
As mentioned in the report done by PAN research group, the two major problems
in Khmer word segmentation. They are:
- Ambiguity issue: Khmer language has no word boundary and has no exact

definition to identify a word. Moreover, a word can be established using
many other words. Therefore, the problem of ambiguity is very principle.
For example:

o I/ = IR0 or [RGIfA

o (urhmaigs = whithligi or [wehehligt or {withiigs

- Unknown word identification: Unknown words are defined as words that
are not in the lexicon. Unknown words can be categorized as many types:
error words, abbreviation (acronym), proper names, derived words,
compounds, and numeric type compound.

Propositions
1. Methods solving the ambiguity issue: the research results two proposed
algorithms for solving this type of problem, the maximum matching
algorithm, and orthographic syllable Bi-gram model. The main idea of the
maximum matching algorithm is to choose the segmentation with the
smallest number of words. However, there is an uncertainty when two
segmentations have the same number of words.

2. Error word detection method: the scope of the research is the problem
of sound similarity problem which means that different writing form
results the same pronunciation. To solve this problem, one has proposed
the used of Khmer Common Expression which will represent the word

with the same sound to one common writing expression.

VI1.2. Goal of the research

Even the solutions proposed for the previous research are made but it doesn’t response to
our case. We need to have an algorithm of word segmentation which is high accuracy and
is high speed. Looking back to algorithm proposed, the maximum matching algorithm is
fast but the accuracy is not acceptable. As for word and orthographic syllable bi-gram
model the accuracy of the segmentation is acceptable but not its speed.

The main goal of this research is to find the solution to speed up the segmentation process
using word bigram model.

VI.2.1. Proposition

Word bigram algorithm used bigram data which stored in files in disk. Each time the
system needs that kind of information, it reads from files which slow down the
segmentation process. To speed it up, we proposed to load all word bigram data into
memory by defining a proper data structure as present in Figure 1, which will use less
memory storage. However, we use the same technique as the previous one by loading all
data in index file into memory storing in a hash table. Each element of hash table is the
instance of the class WordInfo which contains the index of word, and other related
information. To adapt to our new proposition, we change on each element of hash table,
from the instance of WordInfo into its subclass TTSWordInfo which possesses the root

of binary tree research linking to a tree of all indexes of the related second words.
O

> Binary search tree

Index table

4

Figure 1: Data structure used to store bigram data in memory

Each time we need the bigram information of two words, we just find the index of the
first word and the second word, and then search the index of second word on the tree in
the first word. Seeing the second word, we can have the bigram information of those two
words.

Our proposition needs the modification of the storage structure of the bigram data
because we need to speed up our loading when the application starts. The previous
storage structure enables storing data in folders whose name can be calculated using the
index of the first word. In another hand, each folder contains many files which stored
basically the index of the second word and the related bigram information (cf. [1]). Our
change made provides a simple storage structure, a simple algorithm, and a faster loading
process. In the following figure, we present the storage structure we proposed.

wordbigram

Figure 2: Storage structure of the bigram data.

The root folder, named wordbigram, contains many subfolders noted M and each
subfolder contains N files. The number of files stored in each subfolder varies based on
the number of files recorded in index file (We can say N = Number of file in each
folder). The subfolder named numerically starting from 0. So do the files they contain,
which are named using index of the word. For example, the file named 231 corresponds
to the data of word having index 231.

Technically, to find the name of folder F of a word whose index i and each folder

contains N files, we use the following formula:

Below, we present the content of the bigram data in each subfolder.

F = (i - (i modulo N)) / N

#Filename: 213

109
201 21
30 2

frequency

L

Diagram class

TTSFCLCorpusEngine

loadindex Q) : HashTable

The index of the second word.

| The frequency of the bigram which is taken
from the corpus of the word bigram data in
the previous research. Cf. [1]

Figure 3: Content of the bigram data file.

FLCCarpus

- CumentPath :java.lang.String
- tablelndex : HashTable

getBigramType

loadRaw () waid
zawve [swaid
laad () Twaid

+ + + +

BinaryTresMode

inde:x int
frequency :int
left :BinargTreeMode
right :BinarngTreeMode

getBigramToken 1
getBigramCount
AllBigramType 0
AllBigramToken 0
getWocabulany

+ + + + + +

cint

int

vint
cint
cint
cint

EBinarySearchTres

wiford Info

+ Index :short
+ BigramToken :int
+ BigramType :=shord

getFrequencey O :int
getlindex) cint
setFrequency O : woid
setindex () swaid

+ + +]+ +

ot BinangTreeNode

TTsWordinfo

+ display 0 waoid

+

+ insert () Twaid

getMode) : BinayTreeNode

ot BinaSearchTree

+ getTree) : BinarySearchTree
+ setTree) : waoid

Figure 4: Class diagram of new classes

Class diagram description

The tables below describe the elements of each class presented in the class diagram

above.
- PLCCorpus
cf. [1]
- TTSPLCCorpusEngine
Class name TTSPLCCorpusEngine
Description This class provides four static methods which used to load and save
bigram data.
Attributes N/A
Operations loadIndex () Load the content of index file into hash table.
loadRaw () Load the bigram data using previous proposed
storage structure (cf. [1]) into our new data
structure binary search tree.
load () Load the bigram data using our current storage
structure into our new data structure binary search
tree.
save () Save the content in our binary search tree into
files of our new storage structure.

- WordInfo

Class name WordInfo
Description This class represents each line of the data in the index file.
Attributes Index Store index number
BigramToken Store number of the bigram token
BigramType Store number represents the bigram type.
Operations N/A
- TTSWordInfo
Class name TTSWordInfo
Description This class inherits from the class WordInfo. It contains an
additional attribute, named root, which is the root of the binary
search tree. In the tree, we store the index of the second word pair
and the frequency the two words have.
Attributes root Root of the binary search tree.
Operations getTree () Return the root of the tree.
setTree () Set the root of the tree.
- BinaryTreeNode
Class name BinaryTreeNode
Description This class represents the node of the binary search tree.

Attributes index Store index number, normally, of the second
word.
frequency Store the frequency.
left Left hand of the node used to point to another
node on the left.
right Right pointer of the node.
Operations getIndex () Return the index of the word.
getFrequency Return the frequency of the two words pair.
@)
setIndex () Set the index of the word.
setFrequency () | Set the frequency.
- BinarySearchTree
Class name BinarySearchTree
Description This class represents the binary search tree. It provides some
functionality to manipulate on the tree.
Attributes root It represents the root of the binary search tree.
Operations insert () Insert an element to the tree.
getNode () Return a node which contains the index passed as
parameter.
display () Display all contains of the tree.

VI1.3.Conclusion

We proposed a new data structure which will be used to store the bigram data on memory

and the change of storage structure of data on disk. However, we need to do the

experimentation to prove that this proposition response to speed up the segmentation
process. We hope to delivery our testing result in our next report.

VII. Diphone database module

VIL.1. Introduction

According to the previous report the phonetic analysis of khmer sound can be divided
into 21 consonants, 21 vowels (12 long vowels and 9 short vowels) and 10 diphthongs. In
order to adapt with the new words in the future we decide to create a combination of all
diphones possible.

Suppose that:
C = consonant
LV =long vowel
SV =short vowel
D = diphthong
P = silent

Diphone form:

1. C-LV 121 *%12=252
2. LV-C 12 %21 =252
3. C-SV 121 *9=189
4. SV-C :9*%21 =189
5. C-D :21*%10=210
6. D-C :10*21 =210
7. C-C 121 %21 =441
8. LV-SV 1 12*9=108
9. LV-D :12*%10=120
10.LV-LV (12 %12 =144
11. SV -SV :9*9 =81
12. SV-D :9*10=90
13.SV-LV :9*12=108
14. D -SV :10*%9=90
15.D-D 210 * 10 =100
16.D-LV :10* 12 =120
17.P-C 121

18.C-P 121
19.P-LV 112
20.LV-P 112
21.P-SV 19
22.SV-P 19

23.P-D - 10
24.D-P - 10

25.P-P 01

So the total diphone is 2809. However some word we borrow from English doesn’t exist
in our phonetic here, for example the phone “er” in the word “teacher” in English. So to
make our speech processing tools handle this thing, supplemental diphones are needed.

VIIL.2. Phonetic symbol
Some specials character in the real phonetic are difficult to do the treatment in computer
so we propose some symbol for all phonetics to solve this problem.

C1|]C2|C3|C4]|C5 C6 C7| C8 [C9|C10
Un | vl |68 | 8¢ | dg | GHUN | GO | BoWS | AE | oW

P b [ph| t d th c ch k kh
P b [ph| t d th c ch k kh

C11]C12] C13 | C14 [Ci15] C16 | C17 [C18] C19 [C20] C21
HE | w8 | ans | mm | 28 | ueld | @ | i | ugp | 8| ww

? m n n n S h r I w j
? m n n N S h r I W j

Table-01 Consonants symbol

V1 |V2|V3|V4|V5 V6 V7 V8 V9 | V10
a a =] [s ; ” a [a I
H|®| w8 | R |& f H| H | H | H
I ii | @ 9] u u: E e: CE: o)
I i | @|@:| u u: E e: W: o]
Vi1 | V12| V13 Vi4 | V15| Vi6 V17 |Vvi8| V19 |V20| V21
| f | 8§ an o a | i ; i \ i
Alala|w|a|lw|n|alala]a
o:)) a a: a a } t: e: €
0: O O a a: A A Ix iX e.: E

Table-02 Vowels symbol

D1 | D2 | D3| D4 | D5 D6 D7 | D8 | D9 | D10

Bl if o] o] 1)| o |adla

H|H|H |8 |H H H| & (& | 8
D:

a€|ao| o |u@L|ao i:3) i:9 oa €a

iX
aE |a@ | Oo |u@ | ao iVx @ i@ oa | Ea

Table-03 Diphthongs symbol

VIIL.3. Non sense word

The technique to record all khmer diphones is to create non sense word which include
each diphone inside. To get the best diphone signal we add unnecessary word before and
after the diphone which is needed in our project.

C-LV and LV-C

The format C — LV and LV — C can be combining by using a non sense word C - LV - C
Example:

MIVIU (ta pe: pe:)

<ta> is an unnecessary word

<pe:>is diphone we need in the format of C - LV

<e:p> is another diphone we need in the format of LV- C
<e:> the last e: is also an unnecessary sound

C-SV and SV-C

The format C — SV and SV — C could not be combining by using a non sense word C —
SV- C, because between SV and the last C there existe an embedded consonent sound
C11 (?). So we need one non sense word for each format C — SV and SV — C.

3L i}i}(ta pE pE) we get <pE> diphone

31 i:i f (ta pEp ta) and we get <Ep> diphone

To get a complete non sense words, reference to the non sense words document.
VIIL.4. Conclusion

After recording all the non sense word we can uses the praat software to notice starting
point, middle point and ending point of a diphone in one non sense word signal. The
problems we face in this phase are:
* Incorrect phonetic in the lexicon library file
* Define the starting point and the ending point of a diphone from the non sense
word signal

* The duration of the vowel (short or long)
* Some mistake during recording period
To solve the problems above, we check the incorrect diphone and do the record
again, incorrect phonetic can be modified in the lexicon library file, short and long
duration of vowel will be applied by using the technique of how to make an intonation of
the word.

VIII. General conclusion

Natural languge processor is an important component in Text to Speech application. we
have spent a significant time on this part to make sure that the application created is
acceptable and reliable. the researches included, the text to sound conversion, text
normalization, sylibification and diphone identification. The research is completely
done. The outcome of our research is acceptable. However some works such as text to
sound conversion, the accuracy can not be reached 100% cause by the complexity of
word form of khmer language.

References:

[1] http://www.seasite.niu.edu/khmer/writingsystem/writing introduction/intro set.htm,

[2] Developing a New Voice for Hiberno-English in The Festival Speech Synthesis System,
Nigel Rochford

[3] http://en.wikipedia.org/wiki/Speech synthesis, 09/10/2008

[4] Khmer Word Segmentation project, PAN Localization Team

[5] Binary search tree, http://en.wikipedia.org/wiki/Binary_search_tree

http://en.wikipedia.org/wiki/Speech_synthesis
http://www.seasite.niu.edu/khmer/writingsystem/writing_introduction/intro_set.htm

