A Nepali Computational Grammar Analyzer

Bal Krishna Bal
Madan Puraskar Pustakalaya
Lalitpur, PatanDhoka, Nepal

bal@mpp.org.np

Abstract

The document reports on the Nepali Com-
putational Grammar Analyzer, a Natural
Language Processing(NLP) tool, giving an
overview on it’s system architecture and
work flow, followed by a detailed descrip-
tion accompanied by illustrative screen-
shots on how to use the application. The
document also briefly discusses on the for-
malism followed behind the implementa-
tion and reports current performance re-
sults.

1 Introduction

The Nepali Computational Grammar Ana-
lyzer(NCGA) is a tool that analyzes the cor-
rectness or rather well-formedness of a given
Nepali input sentence. Analyzing the sentence
of a language involves a careful examination of
the sentence both from a syntactic and semantic
perspectives of language analysis. The NCGA
tool which is currently in a research prototyp-
ical stage, however, employs just the syntactic
criteria. The tool in itself is an integrated form
of the intermediate Natural Language Processing
(NLP) tools like the Word Aligner, PostPosition
Tokenizer, Parts of Speech tagger, Chunker and
finally the Parser. Nepali, being a free word
order language, we have implemented the parser
using the Dependency Grammar Formalism[4]
and in particular the Paninian Dependency
Grammar framework[1,2,3,5]. Among the in-
termediate NLP tools, we have implemented
all of them on our own except the POS Tagger,
for which we have statistically trained the TnT tag-

ger(http://www.coli.uni-saarland.de/ -

for Nepali with a manually annotated tagged train-
ing data of about 80,000 words. The Chunker is a
rule-based one which is based on some linguistic
rules developed as a result of the manual analysis

Prajwal Rupakheti
Madan Puraskar Pustakalaya
Lalitpur, PatanDhoka, Nepal
prajwalrupakheti@gmail.com

of a text corpus(1 M words) in Nepali. The overall
integrated system, i.e. the NCGA follows a pipe
line architecture, whereby the output of one of
the modules serves as an input to the following
module.We present in the figure below(Figure 1),
the high level system architecture of the NCGA.

2 System Architecture of the NCGA, An
Overview

The NCGA basically consists of three modules,
namely, the Parts of Speech(POS) tagger, Chun-
ker and the ParserHowever,some smaller sub-
modules like the Word Aligner and the Postpo-
sition tokenizer also have some role prior to the
POS tagging process.About the work flow, a given
input Nepali sentence is first fed to the Word
Aligner module that aligns the words from the
sentence into one word per line format. Next,the
aligned words are subjected to postposition tok-
enization, i.e., breaking the word into root words
and suffixes. In Nepali, postpositions usually
come together with mostly nouns and sometimes
with other word categories in the form of suffixes.

Raw input sentences

C Y 3
=3

Chunker

chunked sentences

Constraint Based

Dependency Parser

Dependency parses of the
sentences

Tagged sentences
Karaka
Frame

TAM

transformati
on rule

Figure 1: System Architecture of the NCGA



Once, words are broken down respectively into the
root words and suffixes, they are then passed to
the POS tagger.The tagged words returned by the
tagger are then fed to the chunker, which groups
the tagged words into word groups or chunks on
the basis of the chunker rules contained in the
chunker rule database. The chunk rules as men-
tioned above have been developed as a result of
the manual analysis of a Nepali text corpus. In
our case, these chunks relay modifier-modified re-
lationships. Finally, the chunked text is passed to
the Parser module, which is a very crucial mod-
ule in the overall system.Since, we have followed
the Paninian Dependency Grammar framework, to
suit with the free word order nature of Nepali,
we make abundant use of the knowledge on the
Karaka and the Transformation rules as well as the
vibaktis.! The information is managed in easy to
process XML file formats. Depending upon the
knowledge available in the Karaka and Transfor-
mation files,the information is further processed
by the sub-modules, namely, the Equation gen-
erator and the Equation solver. We have applied
the constraint based integer programming[3] for
these sub-modules. The final result is/are parsed
result(s) of the given input sentence.

3 Nepali Language and Grammar:
Dependency Grammar Formalism

As already mentioned in the previous section,
the Nepali Language follows a free word order.
This means that the order of chunks within
a sentence can be in arbitrary positions and
hence it would be really tedious to develop
phrase structure grammar rules as in the case of
fixed word order languages like English do not
necessarily work for Nepali.The Dependency
Grammar Formalism, on the other hand, which
we have adopted for Nepali, makes use of the
Karaka relations.For Nepali, we have identi-
fied altogether six different karaka relations,
namely,Karta-K1, Karma-K2, Karan-K3,
Sampradaan-K4, Apadaan—-K5,0Others—-KX.
The assumption is that if we can establish valid
karaka relations between the chunks of the sen-
tence and the verb, then the given input sentence
is valid. For example, in the Nepali sentence
Ram le bhaat khaayo (meaning Ram

'"In essense, karakas simply represent relationships be-
tween verbs and other constituents of a sentence whereas
vibaktis functionally map with postpositions.

ate rice), there is a K1 relation between the
verb khaayo and the noun chunk Ram 1le, and
similarly K2 relation between the verb khaayo
and the noun chunk bhaat.

4 Installing and Using the NCGA: How
to?

This section gives a brief walkthrough on in-
stalling and using the NCGA.

4.1 Operating System and Dependencies

The NCGA has command line interface and is ex-
ecuted in Linux shell environment.At the moment
NCGA is Linux specific and can run only on the
Linux machine. The Linux machine needs to have
set jdk 1.6 or above with its environmental vari-
able set up.

4.2 Installing the NCGA

The installation process is pretty simple as copy
and paste. We only need to copy our NCGA folder
any where in our Linux machine.

4.3 Configuring the NCGA

In order to configure NCGA we need to have a
brief understanding of NGC folder hierarchy. The
NCGA contains various folder and files as shown
in the snapshot below(Figure 2).

The bin directory contains all the binary and exe-
cutable files necessary for running NCGA. While
the log directory contains the entire log gener-
ated by NCGA in due course of the analysis,the
res directory consists of all the resources and data
required by NCGA to operate.The run.sh is the
script to run NCGA.Final output file, which is a
completely parsed analysis of a given input sen-
tence is stored in the parserlog file within the

Figure 2: The NGC folder and it’s subdirectories




log sub directory.The config.xml is the configu-
ration file to describe the location of various data
file.In order to configure NCGA, all we need to
do is to provide the right data in different tags
of config.xml.Following is the view of the con-
fig.xml.(Figure 3)
For ease of readability, we present the contents of
the config.xml file below:

nepali @nepalinux:NGCS$ cat config.xml

< ?xml version="1.0" encoding="UTF-8” 7>
<ConfigParser>
<seedFile>./../res/Parser/seedLex.txt
</seedFile>
<postPosFile> ./../res/Parser/postSuffix.txt
</postPosFile>
<primaryRootFrame >

J../res/Parser/rootFrame.xml </primaryRootFrame>

< generalFrameA > ./../res/Parser/typeA.xml
</generalFrameA >

< generalFrameB > ./../res/Parser/typeB.xml
</generalFrameB >

<transFormer> </transFormer>
<outputFileTrans>./../res/outputl.txt
</outputFileTrans>

<ruleFilel> </ruleFilel >

<ruleFile9> </ruleFile9>

<inputFile> ..//Parser/res/input.txt </inputFile>
<outputFile>./../log/parser.log</outputFile >
<eqlog>./../log/eqsolver.log</eqlog>
<parserlog>./../log/parser.log </parserlog>
</ConfigParser>

4.4 Running the NCGA

To run NCGA, we just need to run run.sh file with
config and input file as command line argument
as follows:

q N =) = smb192.165.2.20/- K- Shell - Konsole
2 (B S9a 2 ap - Kanquaror ® rootviewljpg - KSnapst

Figure 3: View of the file config.xml

nepali @nepalinux:NGC$ ./run.sh inputl.txt con-
fig.xml

On the execution of the above command, the
following message is displayed on the screen.

Parsing started...

Word alignment accomplished.

Word breaking and tokenization accomplished.
POS tagging accomplished.

Sentence chunking accomplished.

config.xml

Parsing ended...

Note: Look at the parser.log file inside the
log directory for a complete parse analysis of the
given sentence in the input file.

4.5 Viewing the overall output of the NCGA

In order to view the overall output of the
NCGA,we need to change the directory to the log
file and open the parser.log file.

4.6 Test cases for the NCGA

As test cases for the NCGA,we have devel-
oped five simple Nepali declarative sentences
representing one or more of the Karaka
relations.These test sentences have been
stored one sentence each per file in respectively
five input files.Below,we present the test sentences
along with their corresponding correct Karaka
relations analysis.

Sentencel:Ram le bhaat khaayo
(meaning Ram ate rice).

Analysis of sentencel:K1 relation exists between
khaayo and Ram 1e, K2 relation exists between
khaayo and bhaat.

Sentence2:Ram le chakku le aap
kaatyo (meaning Ram cut the mango
with a knife).

Analysis of sentence2: K1 relation exists between
kaatyo and Ram le, K2 relation between
kaatyo and aap, K3 relation exists between
kaatyo and chakku le.

Sentence3:Ram ghara Jjaanchha (meaning
Ram goes home).

Analysis of sentence3: K1 relation exists between
jaanchha and Ram, K2 relation exists between
jaanchha and ghara.

Sentence4:Ram le Shyam laai pustak



diyo
book).
Analysis of sentence4:K1 relation exists between
diyo and Ram le, K2 relation exists between
diyo and pustak, K4 relation exists between
diyo and Shyam lai.

(meaning Ram gave Shyam a

Sentence5:Ram ghar maa padhchha
(meaning Ram studies at home).
Analysis of sentence5: K1 relation exists be-
tween padchha and Ram, KX relation between
padchha and ghar maa.

Experiments have shown that the NCGA
correctly handles each category of the above
mentioned simple declarative sentences.The work
performance of the NCGA is expected to become
higher as the intermediate modules like the POS
tagger, the Chunker undergo more enhancements.
Besides, the Karaka and the Transformation
frames that contain crucial information on the
Karaka relations also would need to be improved
for better performance of the NCGA.

Acknowledgments

We are grateful to the International Development
and Research Center(IDRC) for the support pro-
vided to this work under the PAN Localization
Project. Our thanks also goes to the host institu-
tion, Madan Puraskar Pustakalaya,Nepal for the
persistent support and platform provided for the
research. We would like to duly thank Mr.Laxmi
Prasad Khatiwada for providing the linguistic help
for the work. Our sincere thanks, similarly go to
our intern students from Kathmandu University,
Mr.Niraj Pokharel, Ms.Dipti Sharma and Ms. Sri-
jana Pokharel for their contributions to the work.

References

A.Bharati, V. Chaitanya, and R. Sangal,
Natural Language Processing - A Paninian Per-
spective. New Delhi: Easter Economy Edition
ed.Kantipur:Prentice Hall, 1995.

A.Bharati and R. Sangal,
“Parsing free word order languages in the Paninian
framework.,” in Proceedings of the 31’st Annual
Meeting on Association For Computational Linguis-
tics (Columbus, Ohio, June 22, 1993). Annual Meet-
ing of the ACL., Morristown, NJ, 1993, pp. 105-111.

A.Bharati, R. Sangal, and T. Reddy,
”A Constraint Based Parser Using Integer Program-

ming,” in Proceedings of the ICON-2002, Mumbai,
2002, pp. 121-127.

J. Nivre.http://w3.msi.vxu.se.[Online].
http://w3.msi.vxu.se/ nivre/papers/05133.pdf

M.Pederson, D. Eades, S. Amin, and L. Prakash,
“Relative clauses in Hindi and Arabic:A paninian
dependency grammar analysis.” in Proceedings of
the Twentiet International Conference on Computa-
tional Linguistics., Geneva, 2004, pp. 17-24.



