
History (Forward N-Gram) or Future (Backward N-Gram)? Which Model to

Consider for N-Gram analysis in Bangla?

Naira Khan, Md. Tarek Habib, Md. Jahangir Alam, Rajib Rahman, Naushad UzZaman and

Mumit Khan

Center for Research on Bangla Language Processing, BRAC University, Bangladesh

naira@bracu.ac.bd, md.tarekhabib@yahoo.com, jahangir_bu@yahoo.com,

rajib77bd@yahoo.com, naushad@bracu.ac.bd, mumit@bracu.ac.bd

Abstract

This paper presents a directional advantage of n-

gram modeling in terms of backward or forward n-

gram modeling in Bangla. The most commonly used n-

gram analysis is predominantly a forward n-gram.

However in Bangla it appears that a backward n-

gram is repeatedly more successful and yields more

grammatical results than a forward n-gram. This

paper hypothesizes that the rationale behind this

success is the syntactic ordering of constituents in

Bangla. Bangla is a head-final specifier-initial

language as opposed to English, which is head-initial

specifier-initial. Hence in Bangla, the head comes

after its argument in a phrase. If an n-gram analysis

begins with a head and moves backwards it will

stretch to its own argument but if you move for-wards

then you'll probably grab the argument of an-other

head. As probability of occurrence of heads is higher,

probability of depending on a head is also higher and

hence a backward n-gram will probably have a

greater chance of yielding grammatical results. We

carried out several experiments to compare different

directional results in different applications with an ad-

vantage in the backward direction. This will prove a

useful linguistic insight in terms of n-gram based

analysis depending upon variations of constituent

analysis.

1. Introduction

An n-gram is a sub-sequence of n items in any

given sequence. In computational linguistics n-gram

models are used most commonly in predicting words

for the purpose of various applications. The use of n-

grams for such purposes is known as language

modeling (LM), the field of modeling on how text is

generated and recognized [1]. In such analysis, a

“likelihood” value is assigned to a given string of

words. For example, the string ‘‘he went home’’ is

more likely than ‘‘abacus kindly flew’’, so the

previous string will be assigned a higher likelihood

value than the latter. A typical application of this kind

of analysis is speech recognition, where a language

model can help the system rank a set of candidate

sentences by measuring the likelihood of their

utterances.

2. Forward n-gram vs. backward n-gram

Formally, we consider a string of words W = w1 . .

.wn . We are interested in creating an expression P (W)

= P (wn | w1wn-1) - a probability distribution over

the vocabulary set (of size |V|), given the history of

words. And for backward n-gram P (W) = P (wk | wk+1

… wk+n-1). Given these language models, the

“likelihood” of a string of words can be calculated as P

(W).

In a forward n-gram, the probability of each word

is estimated depending on the preceding word. In other

words, the n-gram analysis moves in a forward

direction where the prediction depends on the history.

On the other hand, in a backward n-gram the

probability of each word is estimated depending on the

following words, where the prediction depends on the

future.

Conventionally, the forward n-gram method is

used most predominantly for language modeling.

However, we have experimentally found that a

backward n-gram yields better results in various

applications for Bangla. We present these findings and

hypothesize the reason behind this directional

advantage in the following sections.

3. Hypothesis

We hypothesize that a backward n-gram works

better than forward n-gram because Bangla is a head-

final language. In other words, in a Bangla phrase

(e.g., in a noun, verb, or postpositional phrase), the

head comes after its argument or is in the final

position. In case of a noun-phrase the head is the noun

and its argument is the specifier (minimally a

determiner), and for verb phrases, the head is the verb

and the argument is the complement of the verb.

Bangla is a head-final and specifier-initial language as

opposed to English, which is head-initial and specifier-

initial. Since an argument can't exist without the head,

it follows that any body of Bangla text will contain the

sequences [+argument +head] or [-argument +head]

but never the sequence [+argument -head]. So, in

general, heads will occur more frequently than

arguments. If an n-gram analysis depends on the head

then moving backwards will combine the head to its

argument. However, moving forward will combine it

with the argument of another head. If, however, the n-

gram is based on the argument in the first place, then

moving forward will provide grammatical coherence

rather than moving backwards. As probability of

occurrence of heads is higher, probability of n-gram

based on a head is also higher and hence a backward

n-gram has a greater chance of yielding grammatical

results.

The Phrase Structure (PS) rules for Bangla are

S -> NP VP

NP -> ARG N

VP -> ARG V

Backward n-gram

 NP VP

Forward n-gram

 NP VP

4. Analysis

Language modeling using backward n-gram

contains information that is complementary to the

information in the language modeling using forward n-

gram.

Our hypothesis is tested by experimenting in three

types of applications. They are as follows:

- Grammar checking

- Parts of Speech (POS) tagging

- Sentence generation

The experiments along with their analysis are given

below.

4.1. Grammar checking

A Grammar checker determines the syntactical

correctness of a sentence. Three methods are widely

used for grammar checking in a language: syntax

based parsing, statistical approach and rule based

approach. In syntax based grammar checking [2], each

sentence is completely parsed to check the

grammatical correctness of it. The text is considered

incorrect if the parsing does not succeed. In statistics-

based approach [3], a POS-annotated corpus is used to

build a list of POS tag sequence. Some sequences will

be very common (for example, determiner, adjective,

noun as in ‘the old man’), others will probably not

occur at all (for example, determiner, determiner,

adjective). Uncommon sequences in the training

corpus can be considered incorrect in this approach. In

a rule based approach [4], a set of hand crafted rules is

matched against a text which has at least been POS

tagged. This approach is very similar to a statistics-

based approach, but the rules are developed manually.

For Bangla we developed a statistical grammar

checker based on n-gram analysis (both forward and

backward n-gram) of words.

For example, in forward bigram (considers

history), the probability of the sentence “He is

playing.” is:

P (“He is playing”) = P (He | <start>) * P (is | He) * P

(playing | is) * P (. | playing)

On the contrary, in backward bigram (considers

future), the probability of the sentence “He is playing.”

is:

P (“He is playing”) = P (He | is) * P (is | playing) * P

(playing | .) * P(. | <end>)

To estimate the grammatical correctness of an n-

gram based grammar checker, we calculate the

probability of a sentence using the formula above. If

the value of the probability is above some threshold

then we consider the sentence to be grammatically

correct.

Now if any of these three words (He, is, playing)

are not in the corpus then the probability of the

sentence will become zero because of multiplication.

ARG N ARG V

ARG N ARG V

In our calculations, we calculated the probability using

this general n-gram technique; we also used two other

smoothing techniques [1]: add-one smoothing and

Witten-Bell smoothing, to calculate the probability of

a sentence.

We trained our n-gram model (both forward and

backward for bigram and trigram models) with a

39357 token-sized corpus of The Daily Prothom-Alo

[5]. We have experimented with 50 sentences

extracted from the same newspaper, but the test set is

disjoint from the training corpus. Among these 50

sentences, 30 sentences were grammatically correct

and we modified 20 other sentences to make those

sentences grammatically incorrect. We have calculated

the probability of all 50 sentences using add-one

smoothing, Witten-Bell smoothing, and without any

smoothing technique for bigram model and again

calculated the probability using add-one smoothing

and without any smoothing technique for trigram

model.

For bigram model, our result suggested that

without smoothing, backward n-gram performed better

than forward n-gram. Backward n-gram detected 27

grammatically correct sentences out of 30 sentences.

Using add-one smoothing, the backward model again

performed better. But it detected all 50 sentences as

correct sentence, where 20 grammatically incorrect

sentences were present. Using Witten-Bell smoothing,

forward n-gram detected 10 sentences to be correct,

where 7 were correct; and backward n-gram detected

40 sentences to be correct, where 23 sentences were

correct. So, again backward n-gram performed better

than forward n-gram.

Table 1: Comparison between forward and

backward bigram

BIGRAM RESULT

Without smoothing Overall Correct

Forward 0 0

Backward 27 27

Add-one smoothing Overall Correct

Forward 0 0

Backward 50 30

Witten-Bell smoothing Overall Correct

Forward 10 7

Backward 40 23

For trigram model, our result suggested that

without smoothing backward n-gram performed better

than forward n-gram. Backward n-gram detected 14

grammatical correct sentences out of 30 sentences.

Using add-one smoothing, backward model again

performed better. But it detected all 50 sentences as

correct sentence, where 20 grammatically incorrect

sentences were present.

Table 2: Comparison between forward trigram and

backward trigram

TRIGRAM RESULT

Without smoothing Overall Correct

Forward 0 0

Backward 14 14

Add-one smoothing Overall Correct

Forward 0 0

Backward 50 30

Our experiment result suggested that for both

bigram and trigram, backward n-gram suggests better

result than forward n-gram, which consolidates our

hypothesis.

4.2. POS Tagging

Part-Of-Speech (POS) tagging is a technique for

assigning each word of a text with an appropriate parts

of speech tag. The significance of parts-of-speech (also

known as POS, word classes, morphological classes,

or lexical tags) for language processing is the large

amount of information they give about a word and its

neighbor. POS tagging can be used in TTS (Text to

Speech), information retrieval, shallow parsing,

information extraction, linguistic research for corpora

[6] and also can be used as an intermediate step for

higher level NLP tasks, such as, parsing, semantics,

translation, and many more [7], which make POS

tagging a necessary application for advanced NLP

applications in Bangla or any other languages.

We implemented a simple stochastic n-gram

(forward and backward) based tagger for POS tagging.

The intuition behind all stochastic taggers is a simple

generalization of the “pick the most likely tag for this

word” approach.

For a forward n-gram tagger, we calculate the

probability of tag-sequence by P (tag | previous n tags)

and calculate the probability of word likelihood by P

(word | tag). Finally we multiply these two

probabilities to check, for which tag it maximizes the

probability.

Formula for forward n-gram POS tagger:

P (word| tag) * P (tag | previous n tags)

Backward n-gram POS tagger works same as

forward n-gram POS tagger, except the case, it

considers the next n tags rather than previous n tags.

Formula for backward n-gram POS tagger:

P (word | tag) * P (tag | next n tags)

In the experiment of POS tagging, a tagged corpus

of about 3000 words from The Daily Prothom-Alo

(Bangla) [5] and Brown corpus (English) [8] are used.

We also experimented on bigram and trigram POS

tagging model for both Bangla and English to see how

both of these languages perform.

Our experiment resulted that for English,

traditional forward n-gram POS tagger performed

better than backward n-gram POS tagger.

Table 3: Performance for different n-

gram in English

Forward n-gram Backward n-gram

Bi-gram Tri-gram Bi-gram Tri-gram

72.2% 72.0% 71.7% 71.8%

Unlike English, backward bigram POS tagger

performed better for Bangla, and trigram performed

similarly for forward and backward taggers.

Table 4: Performance for different n-

gram in Bangla

Forward n-gram Backward n-gram

Bi-gram Tri-gram Bi-gram Tri-gram

67.6% 68.7% 67.9% 68.7%

From the experiment of POS tagging we see that

the performances of forward and backward tagging in

both Bangla and English differ slightly with a small

advantage of backward n-gram for Bangla as opposed

to English, where it appears that forward n-gram has

better performance. The size of our corpus was 3000

words, which was too small to differentiate the two

approaches. However, we can predict that for Bangla,

backward tagging may perform better than forward

tagging, even if the corpus size is increased.

4.3. Sentence generation

Sentence generation is a form of language

generation. Its task is to generate sentence having

maximum likelihood. In a sentence generation

application using n-gram, seeing n-1 words we

calculate which word is most probable to occur at nth

position. This is basically what forward n-gram is,

using the history of n-1 words to predict the nth word.

On the other hand, backward n-gram uses the future n-

1 words to predict what will be the current word.

Sentence generation using forward n-gram: W =

w1, w2, …, wn-1, wn

Predict wn, based on the probability of previous n-1

words, w1, w2, …, wn-1.

Sentence generation using backward n-gram: w1,

w2, …, wn-1, wn

Predict w1, based on the probability of next n-1 words,

w2, …, wn-1, wn.

To generate sentence in forward n-gram based

sentence generator, we need to input a starting word of

the sentence and the model outputs the whole sentence

based on n-gram probabilities. In case of backward n-

gram based sentence generator, we need to input an

ending word of the sentence and the model outputs the

whole sentence based on n-gram probabilities.

We have generated sentences using forward and

backward n-gram (n = 2, 3 and 4; i.e. bigram, trigram

and quadrigram) model. In both models, if we increase

the value of n the accuracy increases. For Bangla we

have seen that quadrigram is more accurate than

bigram and trigram and generate more likely

sentences. From our experiment we have seen that

backward n-gram based sentence generator outputs

more grammatical sentences than forward n-gram

based sentence generator. In the following sub-sections

we have shown few examples of sentence generator.

Sentence generation output for forward n-gram

Starting word: � � �� �
Forward Bigram: � � � �� �� 	�
 �� �
�� � �� � ��� � � �� � � ��
���� � �� ��� �� ��� � � � �� �� ��
 �� ?

Forward Trigram: � � � �� � ����
 � ���� � �� � ! � �� �
 � �� � � ��
� �� � , " #� ��� $%� ���
� #	�
 $� &� � �
� ��� ! � � � �� � ��
" � ��� ' ��(� � " � ��� � � �� � � �) *� (#� � � � �! �� �� .
Forward Quadrigram: �� ��� �����
 � ���� � �� � ! �� � �

� �� � � �� � � � � , � �� ��+ � � �,�
� �� -� .(� ' /� � /� � ��(� � � ��
� ���0� $ 1� � 2�� � �(�3 .
Starting word: "�
Forward Bigram: " � ����� (.
Forward Trigram: " � ���� �(
 ���� � ��4 � � �(�5� � � � 6� � ,��
! �� � 3 �� �� � � �5 � � �� ! ��� � ��(" �
� ����5� �� �� � �0 �! � �#�
� �7 � ��� � � � � ��5� � 	� � ! � � * .
Forward Quadrigram: " � ����� (
 ���� ��� 4 � � �(�5� � � �6 ��
,�� ��� � ! �� � � ��� ���� � / � 8�5�! �� �� $�� !� �
 9! -�(�� �.

Sentence generation output for backward n-gram

End word is: � (

Backward Bigram Sentence:� �� � � � �! � � � �� � , �! : ;
� <� �= � -�(> � ��
� ��
 � �	 � �
 � �� $
� ��� � � ��(
 �
 � �
� � �(� �� � � (.
Backward Trigram Sentence:�� ��
 � "� �� � � $� ��3 � � � ���
�� $�� � �6?��
� �
 ��! ��� � -� (>@ � � �
� �� AB� � �� � � (.
Backward Quadrigram Sentence:"��
 � �� � �C � � ��
 D � �
 �
��� &� � ���
 �� �
 " � ��� ��� � � �0� �� � ! 	� �� � � (.
End word is: � � (�3
Backward Bigram Sentence:� �� � � � �! � � � �� � , �! : ;
� <� �= � -�(> � ��
� ��
 � �	 � �
 � �� $
� ��� � � ��(
 �
 � �
� � �(� �� � � �(� 3 .
Backward Trigram Sentence:��� �� -� �
 ! � �� � ���
)�?	 ���E " � 6 ��� � �� ��� � �
� <��� ��� � � ���� !� �� ,� ! � �� �
� �(� 3 .
Backward Quadrigram Sentence:" �� � ����� �� �
� � ��� ! �� � ,�! � �� � � � (�3 .

5. Future work

This paper may prove useful as a linguistic basis

for n-gram advantage in head-final or head-initial

languages for performance optimization. However, it

must be mentioned that a strong claim for the

hypothesis proposed in this paper cannot be made due

to lack of data as the experiments were small scale and

only three applications were tested. In order to make

concrete our hypothesis an interesting future endeavor

would be to run a large-scale analysis as well as a

comparison of performance results in head-initial and

head-final languages.

6. Conclusion

N-grams are used very commonly in many

different NLP applications. Most commonly a forward

n-gram is used rather than a backward n-gram.

However, it appears that the backward n-gram yields

better results in Bangla than a forward n-gram, which

in turn performs better in English. This paper attempts

to show that the directional advantage of n-grams may

not be arbitrary in that there may be a sound linguistic

basis for one to perform better than the other.

Although the experiments presented here were small

scale, however, it appears that a backward n-gram

repeatedly has an advantage over a forward n-gram for

Bangla and vice versa in English. Our linguistic

hypothesis states that this difference in performance is

based on the differing constituent ordering of the two

languages as Bangla is head-final and English is head-

initial. This paper may prove to be a starting point in

an endeavor to conduct a large scale analysis in

various applications and parallel comparison run on

languages with different constituent ordering in order

to take this hypothesis further and thus prove useful in

optimizing the performance of n-gram based

applications.

7. Acknowledgment

This work has been supported in part by the PAN

Localization Project (www.panl10n.net) grant from the

International Development Research Center, Ottawa,

Canada, administrated through Center for Research in

Urdu Language Processing, National University of

Computer and Emerging Sciences, Pakistan.

8. References

[1] D. Jurafsky and J.H. Martin, Speech and Language

Processing, Prentice Hall, 2000.

[2] K. Jensen, G.E. Heidorn, S.D. Richardson (Eds.),

Natural Language Processing, the PLNLP approach,

1993.

[3] E. Atwell and S. Elliott, Dealing with ill-formed

English text, The Computational Analysis of English,

Longman, 1987.

[4] D. Naber, A Rule-Based Style and Grammar

Checker, Diploma Thesis, Computer Science -

Applied, University of Bielefeld, 2003.

[5] Bangladeshi Newspaper, Prothom-Alo. Online

version available online at: http://www.prothom-

alo.net/.

[6] D. Jurafsky and J.H. Martin, Speech and Language

Processing, Prentice Hall, 2000.

[7] Y. Halevi, “Part of Speech Tagging”, Seminar in

Natural Language Processing and Computational

Linguistics (Prof. Nachum Dershowitz), School of

Computer Science, Tel Aviv University, Israel, April

2006.

[8] Brown Tagset, available online at:

http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.ht

ml.

