
JKimmo: A Multilingual Computational Morphology Framework for

PC-KIMMO

Md. Zahurul Islam and Mumit Khan
Center for Research on Bangla Language Processing, Department of Computer Science and

Engineering, BRAC University, Dhaka Bangladesh

zahurul@bracu.ac.bd, mumit@bracu.ac.bd

Abstract

Morphological analysis is of fundamental interest

in computational linguistics and language processing.

While there are established morphological analyzers for

mostly Western and a few other languages using

localized interfaces, the same cannot be said for Indic

and other less-studied languages for which language

processing is just beginning. There are three primary

obstacles to computational morphological analysis of

these less-studied languages: the generative rules that

define the language morphology, the morphological

processor, and the computational interface that a

linguist can use to experiment with the generative rules.

In this paper, we present JKimmo, a multilingual

morphological open-source framework that uses the

PC-KIMMO two-level morphological processor and

provides a localized interface for Bangla morphological

analysis. We then apply Jkimmo to Bangla

computational morphology, demonstrating both its

recognition and generation capabilities. Jkimmo’s

internationalization (i18n) frame-work allows easy

localization in other languages as well, using a property

file for the interface definitions and a transliteration

scheme for the analysis.

1. Introduction

Morphological analysis is a key component of Natural
Language Processing (NLP) and Computational
Linguistics, and is a fundamental requirement of most
advanced language processing applications from
grammar checkers to automatic machine translators.
With the current wave of work in Bangla Computational
Linguistics, the need for a robust morphological
analyzer has become critical. Our goal is to create a
robust and reusable framework for doing morphological
analysis of Bangla. There are three primary components
in such a robust morphological analyzer for a language:
the generative morphological rules, the underlying
morphological processor, and the computational
interface through which the user experiments with the
language morphology. There is ongoing work in
developing the computational morphology for Bangla,
using both simple rewriting rules and feature unification
grammars [1-4]. There are also well-established
implementations for two-level morphological analyzers,

with PC-KIMMO being one of the more widely
available ones that implements Kimmo Koskenniemi's
two-level morphology [5-8]. What is missing however is
the framework in which Bangla morphology can be
implemented using Bangla language interface. The
available processors were created before the widespread
use of Unicode [9], predominantly using the Latin script.
This creates an obstacle in creating us-able local
language interfaces, making it difficult to experiment
with the morphology of languages that use complex
scripts, such as the Indic scripts including Bangla.
Instead of creating yet another two-level morphological
processor, we chose instead to Jkimmo by harnessing
the existing PC-KIMMO implementation [8], using the
generative rules defined by existing efforts, and created
a software interface that allows Bangla language
interface to PC-KIMMO. Our implementation uses Java
Native Interface [10] as the bridge between PC-KIMMO
and the Unicode-enabled user interface, allowing the
user to experiment in any script supported by the
Unicode standard. Since the analysis framework uses
standard internationalization (i18n) schemes, it is
trivially localized to any language by using property
files for interface definitions, and transliteration schemes
for the Latin-Unicode-Latin conversion needed to inter-
face to PC-KIMMO backend.

In section 2, we review some related work including
work on Bangla morphological analyzers, followed by
our methodology and implementation details in sections
3 and 4, and then conclude with some discussion of
Jkimmo.

2. Related work

Pykimmo [11] is a python implementation of PC-
KIMMO developed by Carl de Marcken, Beracah
Yankama, and Rob Speer at Massachusetts Institute of
Technology. It was designed for “laboratory”
experimentation with two-level morphological rules.
However, since Pykimmo uses Latin scripts for both
input and output, it requires the use of transliteration and
English language user interface to interact with the
system, thereby limiting its use. Another limitation of
Pykimmo is that it’s based PC-KIMMO version 1,
which implements the two-level rules and the lexicon,
but does not implement the grammar needed to describe
non-concatenative and otherwise complex morphology.
An effort for creating an interface for Bangla

morphological analysis has been developed at the Indian
Institute of Technology - Kharagpur [12], which
provides a web interface to the underlying
morphological engine using the iTRANS transliteration
scheme. Another such effort is the Xerox Arabic
Morphological Analyzer and Generator [13], created
with the Xerox Finite-State Technology. It has a Java
Applet interface and uses ISO-8859-6 and Unicode
character encodings. It is notable that none of these
systems, unlike Jkimmo, is easily extendible to other
languages using Unicode-encoded input and output.

3. Methodology

3.1. PC-KIMMO overview

PC-KIMMO is a morphological analyzer based on
Kimmo Koskenniemi's Two-Level Morphology model
[5]. The first implementation of the two-level model was
PC-KIMMO version 1, developed by the Summer
Institute of Linguistics in 1990. PC-KIMMO
implemented the rules and lexicon components of the
two-level model using two files: (i) the rules file (.RUL)
which specifies all the orthographic rules, and (ii) the
lexical file (.LEX) which specifies all the lexicons,
classification of lexicons and morphotactic constraints
of these classes. [5] The structure of PC-KIMMO is
shown in Figure 1.

Figure 1: Structure of PC-KIMMO parser version 1

One limitation of the version 1 was its inability to
perform syntactic parsing using a word grammar. This
limitation was removed in PC-KIMMO version 2 with
the introduction of a word grammar, adding it as the
third component. [7] The version 2 included a feature-
structure unification based chart parser capable of
producing parse trees based on Shieber’s PATR-II
formalist. [14] The word grammar is specified using a
grammar (.GRM) file, so this version requires a total of
3 files for morphological processing. PC-KIMMO has
two functional components: generation and recognition.

3.2. Generation and Recognition

The generator uses the two-level rules to recursively
compute the surface form from the lexical form. The
rules are encoded using a finite automata that can be
automatically generated from the rules.
The recognizer performs the inverse task to compute the
lexical form from the surface form. Unlike the

generator, the recognizer needs a lexicon in addition to
the two-level rules.

4. Implementation

JKimmo is a graphical user interface (GUI)
implemented in the JAVA programming language, using
PC-KIMMO version 2 as the back end. PC-KIMMO has
tree main component: two level orthographic rule,
lexicon and grammar. These are also the main
components of Jkimmo; in addition, JKimmo has
another component – the transliteration scheme. The
rule file must be loaded for morphological generation
and both the rule and lexicon files must be loaded for
morphological recognition. For generation, JKimmo
does not need the grammar file; for recognition, the
grammar file is optional. Since it uses PC-KIMMO as
the backend, JKimmo automatically uses feature
unification grammar.

4.1. JKimmo components

4.1.1. Transliteration file. The original PC-KIMMO
software is written in C programming language and uses
only Latin alphanumeric characters for input and output
purposes. For inputs using scripts other than Latin, the
user has to come up with his/her own transliteration
scheme that uses Latin characters corresponding to
characters of the non-Latin script. Viewing and
understanding the input and output strings in such a way
can be cumbersome and non-intuitive for the user.

JKimmo solves this problem in a modular, abstract
fashion. It requires that the whole transliteration scheme
be written down in a separate file. The user can then
load that transliteration file. Once the transliteration file
is loaded, the user can input strings and view output
strings in his preferred language in an intuitive way.
Transliteration scheme for Bengali language is given in
Table 1.

4.1.2. Rule file. Two level orthographic rules are
required for JKimmo. The rule file is same as PC-
KIMMO rule file, reproduced here from the reference
manual: “the general structure of the rules file is a list of
declarations composed of a keyword followed by data.
The set of valid keywords in a rules file includes
COMMENT, ALPHABET, NULL, ANY,
BOUNDARY, SUBSET, RULE, and END. The
COMMENT, SUBSET and RULE declarations are
optional and also can be used more than once in a rules
file. The END declaration is also optional, but can only
be used once”. [7] PC-KIMMO only recognizes Latin
characters in rule file. To implement rule for language
that uses other than Latin script we must follow the
transliteration scheme. There is a free rule compiler for
PC-KIMMO called kgen is available. It takes rule
specification and it generate rule for PC-KIMMO. There
are more free tools available that can be used for rule
generation.

Figure 2: Communication protocol of JKimmo and

PC-KIMMO

Figure 3: Main components of JKimmo

4.1.3. Lexicon file. The lexicon contains the indivisible
words and morphemes in their lexical forms, i.e., the
lexical items, as well as the morphotactic constraints. Its
primary task is to decompose a word into its constituent

morphemes using a simple positional analysis. The
positional analysis need only go far enough to ensure
that all correct parses are produced but not too many
incorrect parses. Co-occurrence restrictions between
morpheme positions are best handled in the word
grammar, not the lexicon, because that will raise
complexities of morphotactic analysis. The format for
the lexicon is reproduced from the reference manual: “A
lexicon consists of one main lexicon file plus one or
more files of lexical entries. The general structure of the
main lexicon file is a list of keyword declarations. The
set of valid keywords is ALTERNATION, FEATURES,
FIELDCODE, INCLUDE, and END.” [7] To write
lexicons that will be used in JKimmo for language that
use other than Latin script then we have to follow the
transliteration scheme.

4.1.4. Grammar file. The word grammar is encoded in
the grammar file, which is optional for PC-KIMMO and,
consequently, JKimmo. The grammar file has three
sections: (i) feature abbreviations, (ii) category
templates, and (iii) grammar rules. As in any feature-
structure language, the grammar rules specify the feature
constraints.

Table 1: Bengali transliteration scheme

Bangla Latin Bangla Latin Bangla Latin Bangla Latin Bangla Latin
◌� ^ ◌� a � G � N � R
� A �◌ I 	 G
 t � L
� F ◌
 I � ? � T � S
� H ◌� u � C � d � $
� L ◌� U � C � D � S
� M ◌� R � J � n � H
 Q !◌ e " J # p $ '
% V &◌ E ' Q (P) "
* W !◌� o + V , b - Y
. X !◌/ O 0 W 1 B ◌2 %
3 Z 4 k 5 X 6 m ◌7 &
8 F 9 K : Z ; y ◌< ~

 Figure 4a: Generation example Figure 4b: Recognition example

4.1.5. Localized interface. JKimmo provides the

choice of language for its interface. Currently JKimmo

only support Bangla and English language for its

interface. New language can be added by adding a new

java ResourceBundles property file for that language

[15].

4.2. Algorithm

The algorithms used by the underlying

morphological processor are described in [7]. JKimmo
communicates with the PC-KIMMO API using the two
data structures: KimmoData and KimmoResult. The

KimmoData data structure collects the information
used for data processing within the PC-Kimmo

functions, and designed to hold as much of the
processing parameters as possible to reduce the
number of parameters needed for each function. The

KimmoResult data structure contains a single result
from one of the PC-Kimmo processing functions

(applyKimmoGenerator, applyKimmoRecognizer). It
can be used to build a linked list for ambiguous results.
These algorithms pertain only to the communication

between JKimmo interface and PC-KIMMO library.
We have used JNI as a bridge between JKimmo

interface and PC-KIMMO library. We have used both
PC-KIMMO data structures to access internal
components. The JNI also have some native methods

for communication. This algorithm is for languages
that do not use Latin script. For languages that uses
Latin script just omit transliteration related portion.

4.2.1. The generator. This algorithm has some

perquisites like transliteration file and rule file must be
loaded. The algorithm works as follows:

 1 If the input specified in the lexical form is

empty but user click on generate button
 1.1 JKimmo will do nothing

 2 For each input pair containing the first
character in the lexical form as the lexical
character, do the following steps:

 2.1 If input string is correct:
 2.1.1 Translate the Unicode

string to Latin characters string.

 2.1.2 JKimmo interface calls
generate native method with

translated string as argument.
 2.1.3 Native method calls

applyKimmoGenerator function of

PC-KIMMO library. PC-KIMMO
library save the result into result data

structure.
 2.1.4 JKimmo interface now call

getResult native method to get the
result.

 2.1.5 Native method extracts the
result (Latin character string) from
KimmoResult data structure and

sends to JKimmo interface.
 2.1.6 JKimmo interface translate

the Latin characters string to
Unicode string and show the result.

 2.2 If input string is wrong

 2.2.1 JKimmo will show a
warning message and do nothing.

Figure 4a shows an example of JKimmo generation.

4.2.2. The recognizer. This algorithm also has some
perquisites like transliteration file, rule file, lexicon
must be loaded and grammar is optional. The

algorithm works as follows:
 1 If the input (surface) is empty but user click

on recognize button
 1.1 JKimmo will do nothing

 2 For each input pair containing the first

character in the surface form as the lexical
character, do the following steps:

 2.3 If input string is correct
 2.3.1 Translate the Unicode

string to Latin characters string.

 2.3.2 JKimmo interface calls
recognize native method with

translated string as argument.
 2.3.3 Native method calls

applyKimmoRecognizer function of

PC-KIMMO library. PC-KIMMO
library save the results into result
data structure.

 2.3.4 JKimmo interface now call
getResult and getGloss native

method to get the results.
 2.3.5 Native method extracts the

results (Latin character string) from

KimmoResult data structure and
send to JKimmo interface.

 2.3.6 JKimmo interface translate
the Latin characters string to
Unicode string and show the results.

 2.4 If input string is wrong
 2.4.1 JKimmo will show a

warning message and do nothing.

Figure 4b shows an example of JKimmo recognition.

5. Conclusion

Our goal is to develop a reusable and robust open-
source framework for computational morphological

analysis of Bangla. We started with the existing efforts
in defining the Bangla generative morphology for the

rules, PC-KIMMO version 2 for the two-level
morphological processor for the backend, and
developed a Unicode-based multilingual interface,

JKimmo, that can be used to experiment with Bangla
morphology using Bangla language interface. JKimmo

has been developed from the ground up as
internationalized software, which means that it can be
localized in any language using standard localization

idioms such as property files and transliteration
schemes.

Some of the limitations of the current

implementation of JKimmo are however noteworthy.
One of most useful features of PC-KIMMO version 2

is creating the parse tree when recognizing a surface
form. JKimmo currently only shows the lexical form
and its glosses. The other limitation is in error

handling, specifically where the errors are generated
by the back-end. The next release of JKimmo will

correct both of the limitations.

6. Acknowledgement

This work has been supported in part by the PAN
Localization Project (www.panl10n.net), grant from
the International Development Research Center,

Ottawa, Canada, administrated through Center for
Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,
Pakistan. We would also like to thank Arnab Zaheen,
Naira Khan and other members of our research group.

7. References

[1] P. Sengupta and B.B. Chaudhuri, “Morphological

processing of Indian languages for lexical interaction
with application to spelling error correction”,
Sadhana, Vol. 21, Part. 3, 1996, pp. 363-380.

[2] S. Bhattacharya, M. Choudhury, S. Sarkar and A.

Basu, “Inflectional Morphology Synthesis for Bengali
Noun, Pro-noun and Verb Systems”, Proc. of the

National Conference on Computer Processing of

Bangla, Dhaka, Bangladesh, March, 2005, pp. 34 - 43.

[3] S. Dasgupta and M. Khan, “Morphological Parsing
of Bangla Words Using PC-KIMMO”, Proc. 7th

International Conference on Computer and

Information Technology, ICCIT 2004, Dhaka,
Bangladesh, Dec., 2004.

[4] S. Dasgupta and M. Khan, “Feature Unification for
Morphological Parsing in Bangla”, Proc. 7th

International Conference on Computer and

Information Technology, ICCIT 2004, Dhaka,

Bangladesh, 2004.

[5] K. Koskenniemi, “Two-level morphology: a

general computational model for word-form
recognition and production.”, Publication No. 11.

Helsinki: University of Helsinki Department of

General Linguistics, 1983.

[6] E.L. Antworth, “PC-KIMMO: a two-level
processor for morphological analysis”, Occasional

Publications in Academic Computing No. 16, Dallas,
TX: Summer Institute of Linguistics, 1990.

[7] E.L. Antworth. “Morphological Parsing with
Unification-based Word Grammar”, A paper presented
at North Texas Natural Language Processing

Workshop, May 23, 1994.

[8] PC-KIMMO available at
http://www.sil.org/pckimmo/

[9] Unicode 4.1 specification, available from
http://www.unicode.org/

[10] Java Native Interface Documentation available at
http://java.sun.com/j2se/1.4.2/docs/guide/jni/

[11] Pykimmo is available at
http://web.mit.edu/course/6/6.863/pykimmo/

[12] Bengali Morphological Analyzer demo, available

at www.mla.iitkgp.ernet.in/morph_analyzer.html

[13] K.R. Beesley, “Finite-State Morphological

Analysis and Generation of Arabic at Xerox Research:
Status and Plans in 2001”, ACL Work-shop on Arabic

Language Processing: Status and prospects (Invited
talk), 2001.

[14] S.M. Shieber, “An introduction to unification-
based approaches to grammar”, CSLI Lecture Notes

No. 4. Stanford, CA, 1986.

[15] Java Localization documentation at

http://java.sun.com/developer/technicalArticles/Intl/Re
sourceBundles/

