
Morphological Parsing of Bangla Words Using PC-KIMMO

Sajib Dasgupta and Mumit Khan

BRAC University, Bangladesh.

sajib44new@bracuniversity.net, mumit@bracuniversity.net

Abstract

This paper describes Morphological Parsing of

Bangla words using PC-KIMMO, based on Kimmo

Koskenniemi's model of Two-level Morphology. There

are three sections in the PC-KIMMO: rules section,

lexicon section and grammar section. We explain here

how to write these sections in PC-KIMMO to do

morphological analysis for Bangla.

1. Introduction

Morphological analysis is one of the most

important subjects in Natural Language Processing

(NLP). From MT to Machine Readable Dictionary

morphological parsing and generation is absolute

requirement. For Bangla there is hardly any work to

implement a complete morphological parser or

generator. Our aim is to produce a Morphological

Parser for Bangla using PC-KIMMO, which is widely

used by linguistics around the world for morphological

parsing and generation. PC-KIMMO is based on

Kimmo Koskenniemi’s famous model of Two-level

Morphology in which a word is represented as a

correspondence between its lexical level form and its

surface level form. In this paper we discuss how to

incorporate Bangla in PC-KIMMO. [1][3]

2. Why do morphological parsing?

Bangla has a vast inflectional system, the number

of inflected and derivational forms of a certain lexicon

are huge. For example there are nearly (10*5) forms

for a certain verb word in Bengali as there are 10

tenses and 5 persons and a root verb changes its form

according to tense and person. For example here are

20 forms of verb root KA (��).1

1
 Through out this paper we have used English alphabet to represent

Bangla characters. For example “�” is “a”, “◌� ” is “A”, “�◌ ” is

“I”, “�” is “k”, “�” is “K”, “�” is “y”, “◌	 ”(hasanta) is “~” etc.

 we have also assumed that the words are given in

Unicode Format (vowel comes after consonant). For

example
����� is represented as KEyECI.

Figure 1: Different forms of verb root KA.

Other than this, there are lots of prefixes and

suffixes, which can attach with a root word and form a

new word. So having an exhaustive list of all these

forms in the lexicon will make it huge and space

consuming. So in the dictionary we will store only the

root form (open morphemes) of a word and suffix,

prefixes (closed morphemes) are stored in a known

database. Using these we can generate other words via

morphological parser.

3. Finite state morphological parsing

Here the goal is to divide a Bangla word into

smaller subdivisions. For example if a word is given

KAc~CE (������) to the morphological parser it

will generate the output

KA + PresentContinuous + ThirdPersonNormal

�� + ����� ������� + ���

�����

Here �� (KA) is the root morpheme and

PresentContinuous, ThirdPersonNormal are

morphological features. These features specify the

additional information about the stem.

In order to build a morphological parser we need

at least the following: (1) Lexicon (2) Morphotactics

(3) Orthographic Rules. [4]

3.1. Lexicon

The list of stems and affixes, together with basic

information about them (whether a stem is a Noun

stem or a Verb stem, etc.). Every lexicon is of a certain

class.

Example: Here are two examples

morpheme1:

hAt

Class: Verb_Stem or Root

Feature: Parts of Speech = Verb

morpheme2:

ECI

Class: Tense_Person_Affix

Feature: Tense = Present Perfect

 , Person = 1st person

All the lexicons in a certain class are stored in a

FSA.

3.2. Morphotactics

The model of morpheme ordering that explains

which classes of morphemes can follow other classes

of morphemes inside a word. For example, the rule

that the Bengali Tense_Person_Affixes follow the

Verbs, rather than precede it. Normally morphotactics

is implemented using Finite State Automata (FSA).

3.3. Orthographic rules

These spelling rules are used to model the changes

that occur in a word, usually when two morphemes

combine. For example here A is turned into E: [8]

 hAt + Present Perfect + 1st person

 = hAt + ECI

 = hEtECI (������)

4. Two-level morphological parsing

Morphological parsing took a new turn with

Kimmo Koskenniemi ‘s 1983 dissertation on “Two-

level morphology: A general computational model for

word-form recognition and generation”. [3] The “Two

Level” refers to the two levels of representation of a

word – the lexical or underlying form and the surface

form. There is a direct, letter-for-letter correspondence

between the two levels, which is a natural application

of a Finite State Transducer (FST). In the two-level

model, a word is represented Koskenniemi's model is

"two-level" in the sense that a word is represented as a

direct, letter-for-letter correspondence between its

lexical or underlying form and its surface form. The

word hEtECIlAm for example has the following two-

level representation be represented using the following

two-levels, where + denotes a morpheme boundary

and 0 denotes a null character. [1]

gloss: hAt + PERFECT + PAST + FIRST_PERSON

lexical: hAt + EC + Il + Am

surface: hEt 0 EC 0 Il 0 Am

last: hEtECIlAm

This is done by extending FSA (which is used to

represent lexicon) to add an output for every transition.

As the FSA traverses an edge from one state to

another, it emits an output symbol. To do this we must

add an output alphabet to our definition of Finite State

Machine. This yields a Finite State Transducer (FST).

This is called transducer because it can work both

ways: if the lexical form is given it can generate the

surface form (generation) and if the surface form is

given it can parse it to lexical form (Parsing).

Normally there is not much difference in between

lexical and surface representation. For the above

example we can see that h is turned into h, t is always

turned into t, + is always turned into 0, and so on. But

A is turned into E. So what we have to do is to write a

rule that specifies when A is turned into E. So there are

two types of correspondence in two level

morphological parsing: (1) Default correspondence:

like h:h in the previous example (2) Special

correspondence: like A:E in the previous example.

The two major components of the two-level model

–rules and lexicon– are described below.

4.1. A rules component

It contains phonological rules which specify the

special correspondences. The rule notation is of the

following form: a->b / c _ d [rule notation of

Chomsky and Halle(1968)]. It means a is changed into

b if it occurs in between c and d in lexical form.

The rules are represented as finite state devices as

are done in string matching algorithm. Representing

rules like the above way made the rules work in both

parsing and generation stage. The application of the

two-level rules is a concurrent process, in contrast to

the sequential processing of generative rules.

4.2. A lexical component, or lexicon

The lexicon contains the indivisible words and

morphemes in their lexical forms, i.e., the lexical

items, as well as the morphotactic constraints.

5. The PC-KIMMO parser

The first implementation of the two-level model

was PC-KIMMO version 1, developed by the Summer

Institute of Linguistics in 1990. PC-KIMMO

implemented the two components in two files: (i) the

rules file (.RUL) which specifies all the orthographic

rules, and (ii) the lexical file (.LEX) which specifies

all the lexicons, classification of lexicons and

morphotactic constraints of these classes. [1]

Figure 2: PC-KIMMO parser

The next version of PC-KIMMO, version 2,

included a feature-structure unification based chart

parser capable of producing parse trees. This feature

requires specifying the word grammar, which was

added as the third component. The word grammar is

specified using a grammar (.GRM) file, so this version

requires a total of 3 files for morphological processing.

Now we will discuss in details how we wrote these

files to implement morphological parser for Bangla.

[2]

5.1. The rules section

Here we have to handle all the spelling changes of

the root morpheme that are associated with Bangla

morphological analysis. Here are two examples: [8]

Rule 1: a:e. If we are to generate the form of a verb

for the tense PERFECT and there are a (�) in the first

char and consonant in the last char of the root verb

then a (�) is changed to e ().

For example “ak” is a root verb whose first char is

a(�) and last char is k(consonant). So

 ak + PERFECT + PRESENT + FIRST_PERSON

= ak + EC+ 0 + I

= ek + EC+ 0 +I

= ekECI

(1)

Rule 2: A:E. If we are to generate the form of a verb

for the tense PERFECT and if there are 3 chars in the

root and middle char is A (◌�) then change A to E

(
◌).

For example “hAt” is a root verb which has 3

chars and middle char is A (◌�). So

 hAt + PERFECT + PRESENT + FIRST_PERSON

= hAt + EC+ 0 + I

= hEt + EC+ 0 +I

= hEtECI

(2)

To incorporate these rules we have to write rules

in PC-KIMMO format. Here we will show the contents

of .RUL file that handles the above two rule:

Alphabet. Here we use all the English characters to

represent the Bangla character. We use one to one

mapping for each Bangla character (example “�” is

“a”, “◌� ”is “A”, “�◌ ” is “I”, “
◌ ” is “E”, “�” is

“k”, “�” is “K”, “�” is “y”, “◌	” (hasanta) is “~” etc).

NULL, ANY, morpheme boundary and BOUNDARY

symbols are as usual 0, @, +, # respectively.

Section of .rul file:
ALPHABET

b c d f g h j k l m n p q r s t v w x y z B C D F G H J K

L M N P Q R S T V W X Y Z a e i o u A E I O U + ~ '

NULL 0

ANY @

BOUNDARY #

Subset:

We defined 5 subsets

Section of .rul file:

SUBSET Cons b c d f g h j k l m n p q r s t v w x y z

B C D F G H J K L M N P Q R S T V W X Y Z

SUBSET Vowel a e i o u

SUBSET ShortV A E I O U

SUBSET CnsVow b c d f g h j k l m n p q r s t v w x

y z A B C D E F G H I J K L M N O P Q R S T U V

W X Y Z

Rules. The two special correspondences given above

in (1) and (2) are shown below in PC-KIMMO

format: [6]

Section of .rul file:

RULE " a:e <=> _ CnsVow* Cons +:0 E C" 9 8

 a a CnsVow Cns + E C @

 e @ CnsVow Cns 0 E C @

 1: 2 6 1 1 1 1 1 1

 2. 0 0 2 3 0 2 3 0

 3. 0 0 0 0 4 0 0 0

 4. 0 0 0 0 0 5 0 0

 5. 0 0 0 0 0 0 1 0

 6: 2 6 6 7 1 6 7 1

 7: 2 6 1 1 8 1 1 1

 8: 2 6 1 1 1 9 1 1

 9: 2 6 1 1 1 1 0 1

RULE " A:E <=> +:0 Cons _ Cons +:0 E C" 11 7

 A A + Cons E C @

 E @ 0 Cons E C @

 1: 0 1 2 1 1 1 1

 2: 0 1 2 3 1 3 1

 3: 8 4 2 1 1 1 1

 4: 0 1 2 5 1 5 1

 5: 0 1 6 1 1 1 1

 6: 0 1 2 3 7 3 1

 7: 0 1 2 1 1 0 1

 8. 0 0 0 9 0 9 0

 9. 0 0 10 0 0 0 0

10. 0 0 0 0 11 0 0

11. 0 0 0 0 0 1 0

5.2. The lexicon section

Its primary task is to decompose a word into its

constituent morphemes using a simple positional

analysis. The positional analysis need only go far

enough to ensure that all correct parses are produced

but not too many incorrect parses. Co-occurrence

restrictions between morpheme positions are best

handled in the word grammar, not the lexicon, because

that will raise complexities of morphotactic analysis.

[4, 5, 6]

Verb. When a verb word is given it is divided into

four parts:

1. Verb Root: KA, jA, hAt, GUr

2. Tense: GHATAMAN , PURAGHATITA ,

SADARAN

3. Time: BARTAMAN, ATIT, VHABISWAT

4. Person: UTTAM, MADDAM,

MADDAM_ASAMMAN, NAM

NAM_SAMMAN.

For example if a word is given like this:

hEtECIlAm = hAt + EC + Il + Am

 = hAt + Tense + Time + Person

 = hAt +PURAGHATITA+ATIT+UTTAM

A normal FSA will be as is shown in Figure 3.

Figure 3: FSA for verb

This obviously is a rather coarse analysis of

morphotactic structure, and as such greatly over-

recognizes. For example it recognizes both hAtCIlAm

(��������) and hAtc~CIlAm (��������). This

incorrect parse can be filtered out in the word grammar

component.

Noun. A Noun word consists of an obligatory root (or

indivisible stem) preceded by zero or more prefixes

and followed by zero or more suffixes. Here is the

regular expression of a Noun word.

 Noun= (Prefix)* + Nroot + (Suffix)*

For example

 ��������	�
��

= �� + ������ + �
� + �

 = Prefix+ Nroot + Suffix + Suffix

While it enforces the relative order of prefixes,

roots, and suffixes, it does not enforce any order

among prefixes or suffixes. For example,

adUnIktA = ROOT + SUFFIX

 = adUnIk + tA

 adrtA = ROOT + SUFFIX

 = adr + tA

Both follow the same morpheme structure. But we

know that the first one is correct and the second one is

not [8]. However, this incorrect parse would be filtered

out by the word grammar, which knows that the suffix

+tA can only attach to an Adjective stem.

The morphotactic analysis shown above is

implemented in PC-KIMMO using ALTERNATION

declarations in the main lexicon file (.LEX) [6]. The

alternation name stands for a positional slot, while the

sub-lexicon names stand for the classes of lexical items

that can fill that slot.

ALTERNATION Vroot ROOT1 VROOT2

ALTERNATION Tense SADARAN

GHATMAN

PURAGHATITA

ALTERNATION Time BARTAMAN

 ATIT

 VHABISWAT

ALTERNATION Person PERSON1

PERSON2

PERSON3

 PERSON4

ALTERNATION Nprefix NPREFIX

ALTERNATION Nroot NROOT

ALTERNATION Nsuffix NSUFFIX

ALTERNATION End End

Now we will discuss about the different

sublexicons we used above. A PC-KIMMO lexicon

must start with an INITIAL sublexicon. The INITIAL

sublexicon in our implementation contains just two

null entries, one showing path for the Verb and other

for the Noun.

Some of the lexicons are shown below: (Note:

Here \lf is the lexicon \lx is its category \alt is its next

state \gl is the output when this lexicon is found, \fea is

its features). The features we use here are root: v1, v2;

tense: puraghatita(pg),ghataman(gh) or sadaran(sd);

time: bartaman(b), atit(a), vhabiswat(v); person:

uttam(ut), maddam sadaran(ms), maddam

asamman(ma), nam sadaran(ns), nam samman(nm).

;LEXICON INITIAL

\lf 0

\lx INITIAL

\alt Vroot

\gl

\lf 0

\lx INITIAL

\alt Prefix

\gl

;LEXICON VROOT1(whose last char is consonant)

\lf hAt

\lx VROOT1

\alt Tense

\gl hAt

\fea v1 [more VROOT1 lexicons]

;LEXICON VROOT2(whose last char is vowel)

\lf KA

\lx VROOT2

\alt Tense

\gl hAt

\fea v2 [more VROOT2 lexicons]

;LEXICON SADARAN

\lf 0

\lx SADARAN

\alt Time

\gl +SADARAN

\fea sd

;LEXICON GHATAMAN

\lf C

\lx GHATAMAN

\alt Time

\gl +GHATAMAN

\fea gh v1

;LEXICON GHATAMAN

\lf c~C

\lx GHATAMAN

\alt Time

\gl +GHATAMAN

\fea gh v2

;LEXICON BARTAMAN

\lf 0

\lx BARTAMAN

\alt Person

\gl +BARTAMAN

\fea b

;LEXICON ATIT

\lf Il

\lx ATIT

\alt Person

\gl +ATIT

\fea a

;LEXICON VHABISWAT

\lf b

\lx VHABISWAT

\alt Person

\gl +VHABISWAT

\fea v

;LEXICON PERSON1

\lf I

\lx PERSON1

\alt End

\gl +UTTAM

\fea ut b a

.........[other lexicons of PERSON1 specifying maddam, nam

,.....]

;LEXICON NPREFIX

\lf bI

\lx NPREFIX

\alt NROOT

\gl an+

......[more prefixes]

;LEXICON NROOT

\lf adr

\lx NROOT

\alt NSUFFIX

\gl adr

......[more nouns]

;LEXICON NSUFFIX

\lf tA

\lx NSUFFIX

\alt End

\gl +tA

......[more suffixes]

;LEXICON End

\lf 0

\lx End

\alt #

\gl

5.3. The word grammar section

When the morphemes are given by the lexicon

section they are combined using a word parser. Here

co-relations between different morphemes are

considered using feature unification [2, 7].

In the .GRM file first of all we have to do a

feature and category definition. For example:

Let v1 be <root> = V1

Let v2 be <root> = V2 [Which assigns root features in root

variable]

Let VROOT1 be <cat>=VROOT

Let VROOT2 be <cat>=VROOT

Let GHATAMAN be <cat>=TENSE

Let PURAGHATITA be <cat>=TENSE

Let SADARAN be <cat>=TENSE

Let BARTAMAN be <cat>=TIME

Let ATIT be <cat>=TIME

Let VHABISWAT be <cat>=TIME

Let PERSON1 be <cat>=PERSON

Let PERSON2 be <cat>=PERSON

Let PERSON3 be <cat>=PERSON

The word grammar we used for Bangla is:

RULE Word -> Verbroot Suffix1

RULE Suffix1-> Tense Suffix2

RULE Suffix2 -> Time Person

RULE Verbroot -> VROOT

RULE Tense -> TENSE

RULE Time -> TIME

RULE Person->PERSON

RULE Word -> Prefix NSUFFIX

RULE Prefix-> NPREFIX NROOT

So when we send hEtECI to the recognizer we get

the output shown in Figure 4.

Figure 4: PC-KIMMO output

6. Acknowledgement

This work has been partially supported through

PAN Localization Project (www.PANL10n.net) grant

from the International Development Research Center,

Ottawa, Canada, administered through Center for

Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,

Pakistan. We would like to give them special thanks.

We also acknowledge the constant advices and support

of all the members of the BRAC University specially

Ms. Nupur, Mr. Sheemam Monjel, Mr. Dewan Shariar

Hossain Pavel, Mr. Asif Iqbal Sarkar and Mr. Kamrul

Haider.

7. Conclusion

PC-KIMMO is an open-source software and its

functions can be called from any other program like

dictionary, MT, search and replace etc where

morphological parsing needs to be incorporated. PC-

KIMMO can also handle multiple senses, compound

words etc. The analysis we did here for Bangla is

quite elementary. Lots of rules still need to be added to

make it a complete one. Hopefully this paper can work

as a guide for future morphological analysis.

8. References

[1] E.L. Antworth, PC-KIMMO: a two-level processor

for morphological analysis. Occasional Publications

in Academic Computing No. 16. Dallas, TX: Summer

Institute of Linguistics, 1990.

[2] E.L. Antworth, Morphological Parsing with

Unifcation-based Word Grammar. A paper presented

at North Texas Natural Language Processing

Workshop, May 23, 1994.

[3] K. Koskenniemi, Two-level morphology: a general

computational model for word-form recognition and

production. Publication No. 11. Helsinki: University

of Helsinki Department of General Linguistics 1983.

[4] D. Jurafsky and J.H. Martin, Speech and Language

Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech

Recognition, Prentice Hall, 2000.

[5] Lab1abackround.pdf MIT, Department of

Electrical Engineering and computer science,

6.863/9.611J spring 2004, NLP.

“ai.mit.edu/courses/6.863”

[6] www.sil.org/pckimmo

[7] www.sil.org/pckimmo/v2/doc

[8] S. K. Chottapaday “Vasha Prokash Bangla

Bakaran”.

