
Error-tolerant Finite-state Recognizer and String Pattern Similarity Based

Spelling-Checker for Bangla

Md. Munshi Abdullah, Md. Zahurul Islam, Mumit Khan

BRAC University, Dhaka, Bangladesh

asad.anto@gmail.com, zahurul@bracu.ac.bd, mumit@bracu.ac.bd

Abstract

A crucial figure of merit for a spelling checker

is not just whether it can detect misspelled words,

but also in how it ranks the suggestions for the

word. Spelling checker algorithms using edit-

distance methods tend to produce a large number

of possibilities for misspelled words. We propose

an alternative approach to checking the spelling of

Bangla text that uses a finite state automaton (FSA)

to probabilistically create the suggestion list for a

misspelled word. FSA has proven to be an effective

method for problems requiring probabilistic

solution and high error tolerance. We start by

using a finite state representation for all the words

in the Bangla dictionary; the algorithm then uses

the state tables to test a string, and in case of an

erroneous string, try find all possible solutions by

attempting singular and multi-step transitions to

consume one or more characters and using the

subsequent characters as look-ahead; and finally,

we use backtracking to add each possible solution

to the suggestion list. The use of finite state

representation for the word implies hat the

algorithm is much more efficient in the case of non-

inflected forms; in case of nouns, it is even more

significant as Bangla nouns are heavily used in the

non-inflected form. In terms of error detection and

correction, the algorithm uses the statistics of

Bangla error pattern and thus produces a small

number of significant suggestions. One notable

limitation is the inability to handle transposition

errors as a single edit distance errors. This is not

as significant as it may seem since the number of

transposition errors are not as common as other

errors in Bangla. This paper presents the structure

and the algorithm to implement a practical Bangla

spell-checker, and discusses the results obtained

from the prototype implementation.

1. Introduction

Bangla is a complex language with a large

lexicon, and it is primarily a close-phonetic

oriented language. A morphologically-based

Bangla spelling checker using string pattern

comparison often produces huge number of

possible solutions due to the use of compound

characters in Bangla. So, phonetic based spell

checking is the better approach for Bangla. Puspa

[1] is one such phonetic spelling checker for

Bangla, which, like any phonetic based spell

checkers, has its limitations. It often fails to suggest

for multiple errors in both the root and the suffix of

a word. It also produces huge number of suggestion

for detectable multiple error situations. But, as it is

necessary to have minimal dictionary size for a

spell-checker, it is also important that it produces

small number of relevant suggestions for a word

with around 50% error. Error tolerant finite state

recognition uses its underlying finite-state

recognizer to relate an erroneous word with is most

probable solution set. Our goal is to develop a

system that can handle non-word errors in Bangla

efficiently and quickly. In our proposed system, all

the possibilities are addressed while checking a

non-word error. The reason is that every character

may be correct and at the same time may be wrong,

and so the better approach is to consider all

possibilities and put a threshold value to control the

result size. The threshold refers to the minimum

edit-distance. The primary state table generation

ensures that only the words available in the

dictionary can be produced and nothing else. The

motivation behind the study is to come up with a

strong spell-checking algorithm using the finite

state ma-chine to produce better result from the

existing spell-checkers. In this paper, we tried to

show the improvements achieved by using Finite

State approach and the suggested algorithm and

listing the results yielded by our working prototype.

Our strategy is to map all the roots and their

inflected forms in a state table and use it with the

algorithm to check different types of error firstly as

a single character error, as an earlier study [2, 3]

suggested that error length of 1 to 2 is about 74% of

all Bangla non-word errors, using the current

character and a look-ahead character. If it turns out

to be a multi-character error, multiple transitions

for both the current character and the look-ahead

character will be used to check multiple deletion or

deletion-insertion error. If a solution can not be

found then the current states will be saved and all

the previous characters are inserted, and a multi-

transition to consume the current character from the

start state will be attempted. The final attempt may

lead to a distant solution but as it will have a large

edit-distance; it may eventually be left out of the

solution list. On the other hand, saving the cur-rent

state before the desperate approach actually gives

the ability to even check 3 and more character error

with the subsequent characters. This should cover

the vast majority of the spelling errors as 1 to 3

character errors make up 90.8% of all Bangla non-

word errors [2, 3].

2. Related work

There has been some activity in designing

spelling checkers for Bangla and other South Asian

languages. One recent example is the work done by

UzZaman and Khan on Bangla spelling checker

that uses double-metaphone called Puspa speller

[1]. An approximate string matching algorithms [3]

and a direct dictionary look up method [4] have

been used so far for the detection of typographical

errors and cognitive phonetic errors. Other many

work have done on this field. One significant work

has done on Error-tolerant Finite State Recognition

with Applications to Morphological Analysis and

Spelling [5].

3. Error tolerant finite state recognition

and mapping

We can define error-tolerant finite state

recognizer as a high error tolerant recognizer of a

specific string set supported by the underlying finite

state representation of that specific string set [5].

The important thing is to generate the finite state

machine to recognize only the specific string set

(All the Entries of Bangla Dictionary) only and

nothing else. The term error-tolerance in the other

hand requires an error metric for measuring how

much two string deviate from each other.

Transposition is rather uncommon in Bangla text

and thus Levenshtein distance (accessible at:

http://en.wikipedia.org/wiki/Levenshtein_distance)

is the measure of the deviation of two strings. For

the demonstration purpose we will consider only

the currently recognized set at Table 1 by our

working prototype. Figure 1 explains the

underlying finite state recognizer’s principle by

mapping some of the roots and its inflections. One

thing should be noted is that only the existing

strings are recognized and nothing else, even

though there are other valid strings that are not in

the list. The state table can produce by any of the

commonly used finite state machine tools such as

Xerox FST tool (accessible at:

www.xrce.xerox.com/competencies/content-

analysis/fssoft/docs/fst-97/xfst97.html) and AT&T

FSM library (accessible at:

http://www.research.att.com/~fsmtools/fsm/). The

mapping can be extended for every transition

representing a property, a feature not required for

our implementation at present. For this particular

case study, we have used only 10 root words and a

handful of inflections, but it is enough to test the

expected improvements made to the approach to be

used as a non-word spell checker. The extensive

mapping is not used but kept as a future extension

to the spell checker to have the ability to work on

real-word errors.

4. Spelling-check and errors

The spelling checker being developed deals

with only non-word errors. The algorithm has been

optimized on the basis of statistics to handle the

most probable errors efficiently and yet leave the

scope to handle the more unusual cases. The

algorithm handles substitution and insertion errors

somewhat in a similar manner. It uses the look-

ahead character to map the next move. On the other

hand, deletion error is handled through the current

character. One advantage in checking spelling using

this algorithm is that at every encounter of an

erroneous character, it saves the current state and

thus uses it with later a character which reduces the

scope of misdetection in a multi-character error

situation. At the same time it does not leave any

possibility unexplored and often produces "absurd"

results, but if we take a closer look, the absurd

strings turn out to be probable solutions in terms of

string pattern similarity. The list of types of Bangla

error found in Table 3 and the rate of their

occurrences are the main motivations behind the

spell checking process [3]. The algorithm does not

handle transposition error as a single edit distance

error to reduce complexity. This is reasonable since

the number of these errors is rather small.

Table 1: List of verb roots & some inflected form

�� �� �� �� 	�

�
���
��� �
���
��� �
���
��� �����
���

���
��� ���
��� ���
��� ����
���
���
���

��
��� ��
��� ��
��� ��
���� 	�
����

�
����� �
����� �
����� �������
�����

���
�� ���
�� ���
�� �����
��
���
��

��
�� ��
�� ��
�� ��
��� 	�
���

���� ���� ���� ����� 	����

����� ����� ����� ������
�����

�
���
�� �
���
�� �
���
�� �����
��
���
��

���
� ���
� ���
� ��
�� 	�
��

�
���
� �
���
� �
���
� �����
�
���
�

���� ���� ���� ����� ���

��� ��� ��� ���� 	���

�� �� �� ��� 	��

��� ��� ��� ��� ���

�
���� �
���� �
���� ������
����

Table 2: List of Noun roots & some inflected form

����� �� ��� ���� ��
��

������� ����� ������

��������

�������� ����� ������ ������� ��
�����

������
� ���
� ����
� �����
� ��
���
�

��������� ������ ������� �������� ��
������

�������� ������ �������

Figure1: Finite State Recognizer to Recognize Some Strings from Table 1

Figure 2: Spelling-Checker Algorithm Flow Diagram

Table 3: Types of non-word error in Bangla

Type of error Percentage

Substitution 66.90

Deletion 17.87

Insertion 9.60

Transposition 5.63

5. Algorithm and prototype

implementation

Figure 2 explains the working principles of the

underlying algorithm. While the state tables are meant

to be automatically generated from a set of finite state

rules, the tables used in the prototype implementation

have been hand-coded. The algorithm gets the input

from the String Scanner, and then uses the Finite-State

Recognizer Table to update the set of possible

solutions. As the algorithm uses all the possibilities to

reach the solution, sometimes our algorithm produces

the same string pattern with different edit distance. The

finalizing selection process addresses this problem by

selecting the final solution set.

The algorithm works on the basis of error

occurrence statistics. As suggested by [3], single

character error is the highest among all Bangla text

errors (41.36%), and so it has been handled

exclusively. Moreover, the expectation of the presence

of a particular type of errors in Table 3 also taken

under consideration. After the initialization process,

we checked if each character occurrence can be

consumed by a single transition. If so then we are

scanning a correct word. We have a basic check in the

main block for repetition by putting an error value in

our State-Table for every state. At each failure of such

the sequence to assume possible solution is as follows:

We check for Substitution Error (possible

expectancy 66.90%) by trying to consume the look-

ahead character in two transitions. If possible then we

switch our next test character to be the immediate next

character of the look-ahead character. The recorded

edit distance of this move is 1.

Figure 3: Substitution Error Handling.

a. If we failed in section (a), we check Deletion

Error (possible expectancy 17.87%) by trying to

consume the current character by two transitions.

If possible then we switch our next test character

to be the look-ahead character. The recorded edit

distance for this move is 1.

Figure 4: Deletion Error Handling.

b. If we failed in section (b), we check Insertion

Error (possible expectancy 9.60%) by trying to

consume the look-ahead character by a single

transition. If possible then we switch our next test

character to be the immediate next character to the

look-ahead character. The recorded edit distance

for this move is 1.

Figure 5: Insertion Error Handling.

c. If we failed in section (c), we first save the current

state for later use and check Multiple Character

Deletion Error by trying to consume the current

character by a multiple transitions. If possible then

we switch our next test character to be the look-

ahead character. The recorded edit distance for

this move is the sum of the number of transitions

and 1 and it is updated to the saved state as well.

d. If we failed in section (d), then we assume a

combinational multiple errors and try to consume

the look-ahead character in multiple transitions. If

possible then we switch our next test character to

be the immediate next character to the look-ahead

character. The recorded edit distance for this

move is the sum of the number of transitions and

1.

e. If all attempts are failed we make a bold

assumption that all the characters before the

current character are insertions and make a multi-

transition from the start state to consume the

current character and the try the next character.

The recorded edit distance for this move is the

sum of the number of transitions and the position

of current character.

It should be noted that we save the current state

just after failing with single error checking. This will

eventually help us to lead to the correct solution as

multiple moves with the next test character will be

made from that state. All these checks will be made

with all the elements of the solution set thus no

possibilities will be left off and a synchronous edit

distance update is made to keep things in order.

Another significant benefit from this approach is the

reduced number of pattern matching. The algorithm

will make deterministic moves rather than trying blind

guesses, which this reduces the processing time needed

for each check and increases the speed.

After checking the whole string a finalizing step is

used in which the possible output set is checked, sorted

and selected by threshold matching. All the

possibilities are finalized by making them reach a final

state by the minimum number of moves and it is tried

in both forward and reverse direction. Due to the mix

of singular and multiple moves the prototype often

produces same patterns with different edit distance.

Similar patterns with higher edit distance are removed

after sorting the list. Then the elements having an edit

distance higher than a predefined threshold value are

truncated. Thus the result is shown.

6. Performances and evaluation

The evaluation metric used for testing the

performance is based on the [6] parameters for

isolated-word error correction:

• Lexicon size;

• test set size;

• correction accuracy for single error

misspellings;

• correction accuracy for multi-error

misspellings; and

• type of errors handled (phonetic,

typographical, OCR generated etc.).

These metrics have been used by another notable

effort in Bangla spelling checker as well [7]. There

were 3 files in the test set, each with 97 words. One

file contained all correct strings, another contained

strings with single error of any of the possible types,

and the third file contained string with multiple,

ranging from 2 to 9, character errors.

The lexicon used in this study does not contain the

actual words, rather consists of a state table with 50

states for the 97 strings used in the test case. The

results show 92% accuracy for single character error in

different positions. The algorithm fails to find the

suggestion in cases where the transposition error

occurs at either end of the word, and that accounts for

much of the remaining 8% in our results. In case of

multiple character errors, the accuracy is

approximately 70%. It should be noted that some of

the input words were randomly generated nonsense

words, which often led to the algorithm producing

absurd suggestions in return. An attempt was made to

check the suggestion generation capabilities of the

algorithm for any word, including those that may never

occur in Bangla.

One observation is the important result is the very

small incremental time needed to find single-error

misspellings over the correct ones. The state transition

approach keeps the transition time somewhat the same

and that should be regarded as a significant

improvement in the performance of the spell checker.

7. Future work

One notable improvement would be to introduce

transposition errors as a single edit distance errors. If

that is done, a simple check of single transition

possibility based on the current character and the look-

ahead character will yield a possible suggestion. Faster

and optimized state table generation can further

improve the performance. Extending this algorithm to

handle real-word errors can be achieved by

augmenting the information kept for the mapping of

the states, which is currently used for state status

determination only. Memory requirement is a concern

in the current implementation, which can be

significantly improved by using different

representations such as node-edge representation for

the state table.

8. Conclusion

This paper presents a finite state machine based

spelling checker for Bangla that shows good promise

in terms of suggestion generation and runtime

performance. The method described optimizes its

performance by using statistical information on the

error patterns of Bangla text. While it is quite possible

to use this method on other languages without such

statistics, the performance will definitely suffer for the

lack of it.

9. Acknowledgement

This work has been supported in part by the PAN

Localization Project (www.panl10n.net) grant from the

International Development Research Corporation,

Ottawa, Canada, administered through the National

University of Computer and Emerging Sciences,

Pakistan.

10. References

[1] N. UzZaman and M. Khan, “A Comprehensive

Bangla Spelling Checker” In the Proceeding of

International Conference on Computer Processing on

Bangla (ICCPB-2006), Dhaka, Bangladesh, 17

February, 2006.

[2] P. Kundu and B.B. Chaudhuri, “Error Pattern in

Bangla Text”, International Journal of Dravidian

Linguistics, 28(2), 1999.

[3] B. B. Chaudhuri. 2001, “Reversed word dictionary

and phonetically similar word grouping based spell-

checker to Bangla text”, LESAL Workshop, Mumbai,

2001.

[4] A.B.A. Abdullah and A. Rahman, “A Different

Approach in Spell Checking for South Asian

Languages”, In the Proceeding 2nd International

Conference on Information Technology for

Applications (ICITA), China, 2004.

[5] K. Oflazer, 1996, “Error-tolerant Finite-state

Recognition with applications to Morphological

Analysis and Spelling correction”, Computational

Linguistics, Volume 22, 1996, pp. 73 – 89.

[6] K. Kukich, “Techniques for automatically

correcting words in text”, ACM Computing Surveys,

24(4), 1992, pp. 377-439.

[7] A. Bhatt, M. Choudhury, S. Sarkar and A. Basu.

2005, “Exploring the Limits of Spellcheckers: A

comparative Study in Bangla and English”, The

Second Symposium on Indian Morphology, Phonology

and Language Engineering (SIMPLE'05), Published

by CIIL Mysore, Kharagpur, INDIA, 2005, pp. 60-65.

[8] N. UzZaman and M. Khan, “A Double Metaphone

Encoding for Bangla and its Application in Spelling

Checker”, IEEE International Conference on Natural

Language Processing and Knowledge Engineering,

Wuhan, China, 2005.

[9] N. UzZaman and M. Khan, “A Bangla Phonetic

Encoding for Better Spelling Suggestions”, In the

Proceeding of 7th International Conference on

Computer and Information Technology (ICCIT 2004),

Dhaka, Bangladesh, December, 2004.

[10] S. Deorowicz and M.G. Ciura, “Correcting

Spelling Errors by Modeling their Causes”,

International Journal of Applied Mathematics and

Computer Science, Vol. 15, No. 2, 2005, pp. 275–285.

