
N-gram based Statistical Grammar Checker for Bangla and English

Md. Jahangir Alam, Naushad UzZaman and Mumit Khan

Center for Research on Bangla Language Processing, BRAC University, Dhaka, Bangladesh

jahangir_bu@yahoo.com, naushad@bracu.ac.bd, mumit@bracu.ac.bd

Abstract

This paper describes a statistical grammar

checker, which considers the n-gram based analysis of

words and POS tags to decide whether the sentence is

grammatically correct or not. We employed this

technique for both Bangla and English and also

described limitation in our approach with possible

solutions.

1. Introduction

Grammar checker determines the syntactical

correctness of a sentence. Grammar checking is mostly

used in word processors and compilers. Grammar

checking for application like compiler is easier to

implement because the vocabulary is finite for

programming languages but for a natural language it is

challenging because of infinite vocabulary.

Three methods are widely used for grammar

checking in a language; syntax-based checking,

statistics-based checking and rule-based checking. In

syntax based grammar checking [1], each sentence is

completely parsed to check the grammatical

correctness of it. The text is considered incorrect if the

syntactic parsing fails. In statistics-based approach [2],

POS tag sequences are built from an annotated corpus,

and the frequency, and thus the probability, of these

sequences are noted. The text is considered incorrect if

the POS-tagged text contains POS sequences with

frequencies lower than some threshold. The statistics

based approach essentially learns the rules from the

tagged training corpus. In rule-based approach [3], the

approach is very similar to the statistics based one,

except that the rules must be handcrafted.

However, one of the most widely used grammar

checkers for English, Microsoft Office Suite grammar

checker, is also not above controversy [4]. It

demonstrates that work on grammar checker in real

time is not very easy task; so starting the

implementation for language like Bangla grammar

checker is a major feat.

Bangla being spoken by more than 200 million

peoples [5], no significant work is done on grammar

checking of Bangla text. This paper describes an

ongoing statistical grammar checker based on n-gram

analysis of words and Part-Of-Speech (POS) tags. We

showed the performance of this grammar checker for

English and Bangla.

2. Why statistical approach?

A statistical approach does not need language

resources like handcrafted grammatical rules, except

for perhaps a tagged corpus to train the language

model (LM). Given the scarcity of language resources

for Bangla, statistical approach may be the only

reasonable one for the foreseeable future.

3. Methodology

In statistical approach we can simply measure the

probability of a sentence using n-gram analysis. For

example using bigram probability of the sentence “He

is playing.” is,

P (“He is playing.”) = P (He | <start>) * P (is | He) * P

(playing | is) * P (. | playing)

Now if any of these three words are not in the

training corpus (used to train the LM) then the

probability of the sentence will become zero because

of multiplication. So if we consider the words in this

statistical method then we need a huge corpus that

must contain all the words of the language.

To solve this problem, we can use part-of-speech

(POS) tags rather than individual words. Difference is,

earlier we checked which words are more probable to

come after any word and now we will be checking

which POS tags are more probable to come after any

tags. When we use the tags then the words are

variable.

Take the previous example sentence “He is

playing.” again. After tagging, the sentence becomes

“He/pps is/bez playing/vbg ./.”. Now we can use the

tag sequence to calculate the probability of the

sentence.

P (pps bez vbg .) = P (pps | <start>) *P(bez | pps) *

P(vbg | bez) * P(. | vbg)

The grammar checker we are proposing works as

follows:

1. Assign tag for each word of a sentence.

2. Use n-gram (in our case, n=3; i.e. trigram)

analysis (LM) to determine the probability of the

tag sequence.

3. If the probability is above some threshold then the

sentence is considered grammatically correct. In

our model if probability is greater then zero then it

considers the sentence as correct. Probability of a

sequence becomes zero when two or more

consecutive tags cannot be fit together (or in other

word they are incompatible). This model does not

employ any smoothing techniques yet.

At first we need a POS tagger, which will

automatically tag the words or we need to tag the

words (of a sentence) manually. Then use a trigram

model (which looks two previous tags) to determine

the probability of the tag sequence and finally make

the decision of grammatical correctness based on the

probability of the tag sequence. For example, using the

Brown [6] corpus and Brill’s tagger [7], calculations

for the sentence “He saw the book on the table.” are,

He/pps saw/vbd the/at book/nn on/in the/at table/nn ./.

P (pps | None None) = 0.0635486169593

P (vbd | None pps) = 0.213047910296

P (at | pps vbd) = 0.166456494325

P (nn | vbd at) = 0.483086680761

P (in | at nn) = 0.362738953306

P (at | nn in) = 0.350597938144

P (nn | in at) = 0.44004695623

P (. | at nn) = 0.0847696646819

Probability of the tag sequence = 5.16478478489e-06

Result of our grammar checker is: This sentence

is probabilistically correct.

Now if we try a sentence in our model with

mismatch in agreement “He have the book I want.”,

calculations of our grammar checker will be,

He/pps have/hv the/at book/nn I/ppss want/vb ./.

P (pps | None None) = 0.0635486169593

P (hv | None pps) = 0.0

P (at | pps hv) = 0

P (nn | hv at) = 0.491712707182

P (ppss | at nn) = 0.00493575681605

P (vb | nn ppss) = 0.293785310734

P (. | ppss vb) = 0.0361445783133

Probability of the tag sequence = 0.0

Result of our grammar checker is: This sentence is

either incorrect or impossible to detect.

4. Grammar Checker for Bangla

We employed the same calculations as English for

Bangla grammar checker. In the calculations we need

to assign POS tags for Bangla words. Research effort

on POS tagger lacks for Bangla. To implement a

rudiment POS tagger, stochastic tagger is always

preferable, because creating POS tagging rules is an

onerous task, on the other hand, stochastic taggers

performs better with little efforts. In a stochastic POS

tagger, for better generation of POS tags, we need a

large tagged corpus, which at present is not available

for Bangla.

For our POS tagging, we used the implementation

of Brill’s tagger [7], which is a transformation-based

tagger that generates rules from the training corpus. So

the performance of our tagger increases with the

increase of the size of training corpus. The present

tagger with training corpus of 5000 words from

Bangladeshi newspaper Prothom-Alo [8], gives an

accuracy of 50%+.

For our grammar checker, we trained the Language

Model (trigram) in the same 5000 words Prothom-Alo

corpus.

If we try a Bangla sentence “������ ������	
� ���

���� ��� ����� ��	� ।” for grammar checking,

calculations of our grammar checker will be,

������/ADJ ������	
�/NC ���/POSTP
����/NC ���/NC

�����/NV ��	�/VF ।/PUNSF

P (ADJ | None None)=0.0523560209424

P (NC | None ADJ) = 0.8

P (POSTP | ADJ NC)=0.0613496932515

P (NC | NC POSTP) = 0.36

P (NC | POSTP NC) = 0.314285714286

P (NV | NC NC) = 0.0807453416149

P (VF | NC NV) = 0.0851063829787

P (PUNSF | NV VF) = 0.363636363636

Probability of the tag sequence = 7.26512469566e-07

Result of our grammar checker is: This sentence

is probabilistically correct.

If we reorder some words of the above sentence as

follows: “������ ������	
�
���� ��� ��� ��	� ����� ।“
Then the calculations of our grammar checker will be,

������/ADJ ������	
�/NC
����/NC ���/POSTP ���/NC

��	�/VF �����/NV ।/PUNSF

P (ADJ | None None) = 0.0523560209424

P (NC | None ADJ) = 0.8

P (NC | ADJ NC) = 0.349693251534

P (POSTP | NC NC) = 0.0496894409938

P (NC | NC POSTP) = 0.36

P (VF | POSTP NC) = 0.114285714286

P (NV | NC VF) = 0.0

P (PUNSF | VF NV) = 0

Probability of the tag sequence = 0.0

Result of our grammar checker is: This sentence

is either incorrect or impossible to detect.

Take another example sentence “�����	
	�� ����

�	������ ����� �� ।” in our Bangla grammar checker,

calculations will be,

�����	
	��/NP ����/NC �	������/NC �����/NC

�� /PRTN ।/PUNSF

P (NP | None None) = 0.157068062827

P (NC | None NP) = 0.233333333333

P (NC | NP NC) = 0.37037037037

P (NC | NC NC) = 0.260869565217

P (PRTN | NC NC) = 0.00621118012422

P (PUNSF | NC PRTN) = 0.25

Probability of the tag sequence= 5.4984269000e-06

Result of our grammar checker is: This sentence is

probabilistically correct.

5. Performance

We have tested our grammar checker for both

English and Bangla. Since the performance of

grammar checker significantly depends on POS

tagging output, we checked the performance of

grammar checker by manual tagged sentences and also

using automated taggers.

For English, using manual tagging the grammar

checker’s performance is 63% (detected 545 sentences

as correct, out of 866 correct sentences). Using manual

tagging for 378 correct sentences in Bangla, we have

found that the grammar checker’s performance is

53.7%. That is the grammar checker detected 203

sentences out of 378 sentences as correct.

For Bangla, we have tested 34 correct sentences,

which were tagged by automated Bangla POS tagger

to analyze the performance of the grammar checker.

From the analysis we have found that the grammar

checker produces about 38% correct result.

6. Discussion on performance

There are few reasons behind the low performance

of our grammar checker. These reasons are described

below.

Training data that is used to train the language

model should have wide coverage of common

grammatical and syntactical rules.

We have seen that current model works well for

simple sentences but doesn’t work the same way for

compound sentences. Low performance for English

test set is due to the large compound sentences in the

Brown corpus.

Significant amount of performance of grammar

checking depends on the result of POS tagging. We

have seen this difference between manual tagging and

automated tagging for Bangla.

We need a tag set for POS tagging. Since most of

the grammatical mistakes are due to agreement

(number, person etc.) mismatch, so we need a tag set

with agreement features. The tag set we are using for

Bangla do not have enough agreement features. As a

result the grammar checker considers some of the

wrong sentences with agreement mismatch as correct.

For example, the Brown Corpus tag the word ‘I’ and

‘You’ with same tag. As a result a conflict arose as for

the following cases,

Sentence 1: “I are playing”

I/ppss are/ber playing/vbg

P (ppss | None None) = 0.039321111615

P (ber | None ppss) = 0.0560131795717

P (vbg | ppss ber) = 0.236514522822

Probability of the tag sequence= 0.000520923351424

*Result of our grammar checker is: This sentence is

probabilistically correct!

Sentence 2: “You am playing”

You/ppss am/bem playing/vbg

P (ppss | None None) = 0.039321111615

P (bem | None ppss) = 0.0280065897858

P (vbg | ppss bem) = 0.153846153846

Probability of the tag sequence= 0.000169423114296

*Result of our grammar checker is: This sentence is

probabilistically correct!

Again, if we interchange two adjacent words with

same tag then our grammar checker cannot detect the

incorrect sentences.

For example, calculations for “�����	
	�� �	������

���� ����� �� ।“ will be,

�����	
	��/NP �	������/NC ����/NC �����/NC

�� /PRTN ।/PUNSF

P (NP | None None) = 0.157068062827

P (NC | None NP) = 0.233333333333

P (NC | NP NC) = 0.37037037037

P (NC | NC NC) = 0.260869565217

P (PRTN | NC NC) = 0.00621118012422

P (PUNSF | NC PRTN) = 0.25

Probability of the tag sequence= 5.4984269000e-06

* Result of our grammar checker is: This sentence is

probabilistically correct!

We have seen that interchanging two words

produced wrong result. To resolve this problem, word

level n-gram can be used. Using word level n-gram we

can determine which word is more likely after given

word(s).

Performance of our grammar checker also

depends on which Language Model is used. Because

bigram consider coherence between two words (here

between two tags), trigram consider among three,

quadrigram four and so on. So which gram to use for a

language depends on the average length of the

sentences in the language.

7. Future work

Other than statistical grammar checker, rule based

grammar checker can be introduced for Bangla. Final

grammar checker can be a hybrid system combining

both statistical and rule based approach.

8. Conclusion

Grammar checker is one of the most widely used

applications in word processors, which itself is a very

important tool for local language computation. We are

proposing a statistical grammar checker for Bangla,

which has a reasonably good performance as a

rudiment grammar checker. We also discussed the

limitation of our model with the suggestions to

overcome these limitations.

9. Acknowledgment

This work has been supported in part by the PAN

Localization Project (www.panl10n.net) grant from the

International Development Research Center, Ottawa,

Canada, administrated through Center for Research in

Urdu Language Processing, National University of

Computer and Emerging Sciences, Pakistan.

10. References

[1] K. Jensen, G.E. Heidorn, S.D. Richardson (Eds.),

Natural Language Processing, the PLNLP approach,

1993.

[2] W.K. Chen, Linear Networks and Systems,

Belmont, CA, Wadsworth, 1993, pp. 123–135.

[3] E. Atwell and S. Elliott, “Dealing with Ill-formed

English Text”, In: R. Garside, G. Leech and G.

Sampson (eds), The Computational Analysis of

English: A Corpus-based Approach, London,

Longman, 1987.

[4] D. Naber, A Rule-Based Style and Grammar

Checker, Diploma Thesis, Computer Science -

Applied, University of Bielefeld, 2003.

[5] S. Krishnamurthy, A Demonstration of the Futility

of Using Microsoft Word’s Spelling and Grammar

Check, available online at:

http://faculty.washington.edu/sandeep/check/

[6] The Summer Institute for Linguistics (SIL) Ethnologue

Survey, 1999.

[7] Brown Tagset, available online at:

http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.html

[8] E. Brill, “Some advances in rule based part of speech

tagging”, In Proceedings of The Twelfth National

Conference on Artificial Intelligence (AAAI-94), Seattle,

Washington, 1994.

[9] Bangladeshi Newspaper, Prothom-Alo. Online version

available online at: http://www.prothom-alo.net/

[10] Natural Language Toolkit, available online at

http://nltk.sourceforge.net/index.html

