
Parsing Bangla using LFG: An Introduction

Muhammad Nasimul Haque and Mumit Khan

BRAC University,Dhaka, Bangladesh

mnasimh@yahoo.com, mumit@bracuniversity.ac.bd

Abstract

This paper is introduces LFG (Lexical Functional

Grammar) formalism for parsing Bangla. The LFG

formalism, which has evolved from extensive

computational, linguistic, and psycholinguistic research,

provides a simple set of devices for describing the common

properties of all natural languages and the particular

properties of individual languages. This paper tabulates a

set of instructions for using the formulation of LFG rules to

parse Bangla. With the information contained in this paper,

linguists previously unfamiliar with this very expressive

formalism of this theory should find it possible to interpret

and to compose the kind of syntax rules and lexical items

employed in LFG. In this paper we present successful

parses of some simple Bangla sentences along with some

unsuccessful parses of ungrammatical sentences.

1. Introduction

The Computer understanding of language has many

practical applications, for example, easy to use interfaces,

machine translation and intelligent question-answering

systems. Parsing is a fundamental problem in language

processing for both machines and humans. Most natural

language applications, such as Information Extraction,

Machine Translation, and Speech Recognition, would

almost certainly benefit from high-accuracy parsing. From a

scientific standpoint, there is the question of how people

interpret language: what knowledge is used, and exactly

how this knowledge is applied in practice. In its simplest

form, the parsing problem involves the definition of an

algorithm that maps any input sentence to its associated

syntactic tree structure.

It is well established that parsing natural language text

is much more difficult than strictly defined computer

languages. One reason is that grammars for natural

languages are often complex, ambiguous, and specified by

collections of examples rather than complete formal rules.

Another difficulty is that punctuation is used much more

sparingly. For example, many sentences in Bangla consist

of a sequence of words in which the only punctuation is the

terminating period. Parsing is a process of transforming

natural language into an internal system representation,

which can be trees, dependency graphs, frames or some

other structural representation. Syntactic-only parsing

attempts to convert the natural language strings into either

tree structures or dependency links representing the

syntactic structure of the utterance. The syntactic structures

can later be sent for a semantic interpreter for further

processing. The most common syntactic parsers today are

probabilistic context free grammar parsers, which combine

a context free grammar with a probability model which

determines the most likely parse out of a large number of

syntactic trees consistent with a given utterance (see for

example [1, 2].

The steps of the understanding process are parsing and

semantic interpretation, and the formal knowledge

representation suitable for computer processing. A core

component necessary for parsing and semantic

interpretation is the system lexicon. This is a data store that

lists all words known to the system, and encodes their

syntactic properties and the correspondences between

words in the language and concepts in the computer

knowledge representation. In this paper we will not be

exploring the structures that efficiently represent the

information needed for interpretation in the system lexicon,

and the way parsing speed and semantic disambiguation

accuracy can be improved with the use of semantic feature

vectors and efficient integration of domain independent and

domain specific information in the lexicon.

We are interested in syntactic parsing as the syntactic

relationships in a sentence correspond to functional

relationships in the underlying meaning representation. For

example, in a sentence “aamra bhaat kheyechhilaam”,

'bhaat' is the object of 'kheyechhilaam', which in the

underlying meaning representation corresponds to the fact

that 'bhaat' is an argument (sometimes called THEME or

PATIENT) of a 'khaowa' action. This relationship has long

been studied in linguistics, and it is well known that often

there are many possible syntactic structures consistent with

the same string. The correct syntactic parse is (informally)

defined as the one that humans see as corresponding to the

correct semantic interpretation of the utterance. It is the job

of the semantic theory to select the correct parse and the

corresponding interpretation from the set of all parses

consistent with a sentence. This paper is concerned with the

lexical information needed to solve ambiguity problems

during parsing and semantic interpretation.

2. Lexical Functional Grammar (LFG)

The term Lexical Functional Grammar (LFG) was first

introduced in print in the 1982 by Kaplan and Bresnan.

Since then the formalism of LFG has been applied in the

description of a wide range of linguistic phenomena. The

basic features of the formalism are quite simple: the theory

assigns two levels of syntactic representation to a structure,

the constituent structure and functional structure [3]. The c-

structure is a phrase-structure tree that serves as the basis

for phonological interpretation while the f-structure is a

hierarchical attribute-value matrix that represents

underlying grammatical relations. The c-structure is

assigned by the rules of a context-free phrase structure

grammar. Functional annotations on those rules are

instantiated to provide a formal description of the f-

structure, and the smallest structure satisfying those

constraints is the grammatically appropriate f-structure.

A very striking aspect of LFG is its stability as a

framework. The fundamental architecture of the theory has

remained constant since the late 1970s. A very important

facet of LFG syntax, which signals it out from many other

syntactic theories, is the representation of different

dimensions of the syntax (c-structure and f-structure, or

external and internal syntax) by means of different formal

entities: the architecture combines a context free grammar

formalism (for c-structure) with attribute value structure

(for f-structure) [4].

LFG is a monotonic theory of syntax; instead of

postulating different derivational levels represented in the

same formal language, it incorporates different parallel

levels of information, which can all potentially access each

other, each with its own formal language. The assumption

about parallel levels of information extends even to non-

syntactic aspects of grammar. Thus, for example, semantic

information is assumed to be available to various levels of

syntax, and syntactic levels can input into phonology [5].

3. Parsing Bangla

We now focus on writing a simple LFG for parsing

simple sentences in Bangla. We use here a simple sentence

with an object to the verb. Let the sentence be

(S1) 'aamra bhaat kheyechhilaam'

Here we see that 'kheyechhilaam' is the THEME with a

PATIENT 'bhaat'. To parse this sentence using CFG

(Context Free Grammar) we need the following rules:

(R1) S → NP VP

(R2) NP → Pro

(R3) NP → N

(R4) VP → NP VP

(R5) VP → V

(R6) Pro → aamra

(R7) N → bhaat

(R8) V → kheyechhilaam

These rules made the parsing of the sentence

straightforward. The tree view of the solution is as in Figure

1.

aamra

Pro

NP

bhaat

N

NP

kheyechhilaam

V

VP

VP

S

Figure 1: Tree of the CFG parse of (S1)

Now, let us add two more pronouns 'aamader' and

'tomraa' in the list.

(R9) Pro → aamader

(R10) Pro → tomraa

Then we get successful parses (along with tree view,

Figure 2 and Figure 3) for grammatically incorrect

sentences like

(S2) *'aamader bhaat kheyechilaam'

aamader

Pro

NP

bhaat

N

NP

kheyechhilaam

V

VP

VP

S

Figure 2: Tree of the CFG parse of (S2)

(S3) *'tomraa bhaat kheyechilaam'

tomraa

Pro

NP

bhaat

N

NP

kheyechhilaam

V

VP

VP

S

Figure 3: Tree of the CFG parse of (S3)

To avoid this kind of inefficiency the LFG adds

another level to CFG that is known as c-structure. The rules

of a Lexical Functional Grammar contain expressions

known as FUNCTIONAL SCHEMATA, which are

associated with the symbols that appear on the right hand

side of the arrow →. Figure 4 shows the usual format for

writing rules in LFG.

Figure 4: Format of LFG rules

LFG uses two meta-variables ↑ and ↓ arrows in its

functional schemata. The symbol ↑, known as the EGO or

SELF meta-variable, abbreviates the composition of the

structural correspondence with the mother function, and ↓,

known as the MOTHER meta-variable, stands for the f-

structure corresponding to the matching node. Thus the

annotation on the NP, i.e., (↑ SUBJ) = ↓, can be read as

“the subject of the f-structure of the matching NP node's

mother is the matching node's f-structure”. Following are

the rewritten rules of (R1) to (R4) in LFG:

(R11) S → NP VP

 (↑ SUBJ) = ↓ ↑ = ↓

(R12) NP → N

 ↑ = ↓

(R13) VP → NP VP

 (↑ OBJ) = ↓ ↑ = ↓

(R14) VP → V

 ↑ = ↓

along with the lexical entries

(R15) N → aamra

 (↑ PRED) = 'pro'

 (↑ PERS) = 1

 (↑ NUM) = PL

 (↑ CASE) = NULL

 (↑ ANIM) = '+'

(R16) N → aamader

 (↑ PRED) = 'pro'

 (↑ PERS) = 1

 (↑ NUM) = PL

 (↑ CASE) = GEN

 (↑ ANIM) = '+'

(R17) N → tomraa

 (↑ PRED) = 'pro'

 (↑ PERS) = 2

 (↑ NUM) = PL

 (↑ CASE) = NULL

 (↑ ANIM) = '+'

(R18) N → bhaat

 (↑ PRED) = 'rice'

 (↑ PERS) = 3

 (↑ CASE) = NULL

 (↑ ANIM) = '-'

(R19) V → kheyechhilaam

 (↑ PRED) = 'eat<(↑ SUBJ), (↑ OBJ)>'

 (↑ TENSE) = PAST

 (↑ SUBJ PERS) = 1

 (↑ SUBJ CASE) = NULL

 (↑ SUBJ ANIM) = '+'

The annotated tree of the sentence (S1) is shown in

Figures 5 and 6.

aamra

(↑PRED)='pro'

...

N f4

↑ = ↓

NP f2

(↑ SUBJ)= ↓

bhaat

(↑ PRED)='rice'

...

N f7

↑ = ↓

NP f5

(↑ OBJ)= ↓

kheyechhilaam

...

(↑ TENSE)=PAST

...

V f8

↑ = ↓

VP f6

↑ = ↓

VP f3

↑ = ↓

S f1

Figure 5: Initial annotated tree for (S1) in LFG

aamra

(f4 PRED)='pro'
...

N f4

f2 = f4

NP f2
(f1 SUBJ)= f2

bhaat

(f7 PRED)='rice'
...

N f7

f5 = f7

NP f5

(f3 OBJ)= f5

kheyechhilaam

...
(f8 TENSE)=PAST

...

V f8

f6 = f8

VP f6

f3 =f6

VP f3

f1 = f3

S f1

Figure 6: Completed annotated tree for (S1)

After completing the annotated tree the unification

process begins, i.e., the f-structure formation starts. A

simple unification of the annotated tree in Figure 6 at the

functional f3 is shown in Figure 7.

























































−

















+

><

=













































+

><

∪









































−

ANIM

NULLCASE

PERS

ricePRED

f

f
OBJ

ANIM

NULLCASE

PERS

SUBJ

PASTTENSE

OBJfSUBJfeatPRED

f

f

f

ANIM

NULLCASE

PERS

SUBJ

PASTTENSE

OBJfSUBJfeatPRED

f

f

f

ANIM

NULLCASE

PERS

proPRED

f

f
OBJf

3

''

7

5

1

')8(),8('

8

6

3

1

')8(),8('

8

6

3

3

''

7

5
3

Figure 7: Unification process at functional f3

Thus the unification of functional gives the total

solution of successful parse of the sentence, which is given

by the f-structure given in Figure 8. Therefore f-structure is

an attribute-value matrix that holds all the syntactic and

even semantic information of the sentence.

































































−























+

><

NULLCASE

ANIM

PERS

ricePRED

f

f
OBJ

ANIM

NULLCASE

PLNUM

PERS

proPRED

f

f
SUBJ

PASTTENSE

OBJfSUBJfeatPRED

f

f

f

f

3

''

7

5

1

''

4

2

')8(),8('

8

6

3

1

Figure 8: f-structure of the sentence (S1)

But when we try to parse the sentence (S2) we are left

with an invalid unification, and this is because the attribute

CASE of the pronoun ‘aamader’ has value GEN, but the

head verb ‘kheyechhilaam’ is associated with subject

having CASE value NULL. Hence parsing fails, which is

desired, as shown in Figure 9.

Parsing the sentence (S3) is also unsuccessful. As the

head verb suggests that subject must have the value ‘1’ for

the attribute PERS, while the pronoun ‘tomraa’ has value

‘2’ for the attribute PERS, as shown in Figure 10.

!

3

''

7

5

1

)8(),8(

8

6

3

1

1

''

4

2
1

Fails

ANIM

NULLCASE

PERS

ricePRED

f

f
OBJ

ANIM

NULLCASE

PERS

SUBJ

PASTTENSE

OBJfSUBJfeatPRED

f

f

f

f

ANIM

GENCASE

PLNUM

PERS

proPRED

f

f
SUBJf

























































−

















+

><

∪













































+

Figure 9: Failed unification of (S2) and (S3)

!

3

''

7

5

1

)8(),8(

8

6

3

1

2

''

4

2
1

Fails

ANIM

NULLCASE

PERS

ricePRED

f

f
OBJ

ANIM

NULLCASE

PERS

SUBJ

PASTTENSE

OBJfSUBJfeatPRED

f

f

f

f

ANIM

NULLCASE

PLNUM

PERS

proPRED

f

f
SUBJf

























































−

















+

><

∪













































+

Figure 10: Failed unification of (S2) and (S3)

4. Discussion

We present a very simple framework for parsing

Bangla using LFG, with some examples of successful

parses of grammatically correct simple sentences and

unsuccessful parses of ungrammatical sentences. This is

just the beginning however, and we are still a long way

from creating a usable computational grammar for Bangla

in the LFG framework. Challenges include creating a

complete Bangla lexicon with the information needed for

LFG, and a systematic study of Bangla grammar required to

formulate the syntactic rules.

5. References

[1] E. Charniak, “Statistical Parsing with a Context-Free

Grammar and Word Statistics,” In Proceedings of the 14th

National Conference on Artificial Intelligence and 9th

Innovative Applications of Artificial Intelligence

Conference (AAAI-97/IAAI-97), pages 598-603, Menlo

Park, July 27-31 1997. AAAI Press.

[2] M. Collins, “Three Generative, Lexicalized Models for

Statistical Parsing," In Philip R. Cohen and Wolfgang

Wahlster, editors, Proceedings of the Thirty-Fifth Annual

Meeting of the Association for Computational Linguistics

and Eighth Conference of the European Chapter of the

Association for Computational Linguistics, pages 16-23,

Somerset, New Jersey, 1997.

[3] R.M. Kaplan, “The Formal Architecture of Lexical

Functional Grammar”, Journal of Information Science and

Engineering, pp 305-322, vol. 5, 1989.

[4] L. Sadler, “New Developments of Lexical Functional

Grammar”, 1996.

[5] S. Joshi, “Selection of Grammatical and Logical

Functions in Marathi”, PhD thesis, 1993.

[6] P. Sengupta and B.B. Chaudhuri, “A Delayed Syntactic-

Encoding-based LFG Parsing Strategy for an Indian

Language – Bangla”, Association for Computational

Linguistics, 1997.

