
Integrating Bangla Computing Support in OpenOffice.org 
 

Asif Iqbal Sarkar, Dewan Shahriar Hossain Pavel and Mumit Khan 

BRAC University, Dhaka, Bangladesh. 

asif@bracuniversity.net, pavel@bracuniversity.net, mumit@bracuniversity.net 

 

 

Abstract 
 

This paper addresses the issues of Integrating 

Bangla Computing support for OpenOffice.org office 

suite and in the process, Identifies and describes the 

different problems associated with OpenOffice.org 

and that should be solved in order to get optimum 

performance in Bangla Script rendering and 

computing. The paper also discusses the integration 

and methodology of a number of small applications 

that have been developed to work with OpenOffice.org 

and the problems related to this issue. 

 

1. Introduction 
 

The history of Bangla computing is not very rich. 

There has not yet been any significant development 

other than some sporadic effort directed towards 

Bangla keyboards and some word processors. Our 

work is to accomplish the goal of developing several 

small applications for Bangla word processing and 

OCR and hence integrate them in a complete office 

suit as separate components, so that anybody who uses 

the office program can be benefited in his/her Bangla 

computing activities. Initially, an open source office 

suit, namely OpenOffice.org [1], has been selected for 

integration of components like Bangla Spellchecker, 

Search & replace utility and a simple OCR engine. 

These small applications are part of almost all popular 

word processors available at present, but none of them 

support Bangla scripts and hence cannot perform on 

Bangla documents. Our applications will help Bangla 

users to perform spell-checking, searching and 

replacing and simple OCR operations on Bangla 

documents using the same Office program. Since these 

programs are integrated as components into the office 

program the users only need to have the office 

program installed in their systems rather than 

individually in-stalling the components. While 

working on the applications we have come across the 

fact that the biggest problem for Bangla computing is 

co-existence of multiple encoding for Bangla letters 

and so far no progress towards standardization of 

character encoding has been made. So, it creates 

compliance problem among different Bangla software, 

which basically discourages developers to develop 

Bangla software. But with the advent of Unicode for 

Bangla script, this encoding problem can be solved 

successfully and for this very reason our applications 

are developed to work with Unicode. 

 

2. Reasons for choosing OpenOffice.org 
 

At the beginning of the project we had to decide 

which Office suit we would work with. There were 

several issues we had to keep in mind before making 

this choice. For the convenience of our project we had 

to go for an open source office package as oppose to 

any proprietary Office suit. We had several options 

like, ABI word of GNOME, K-word of KDE and 

OpenOffice.org. ABI doesn’t provide support for 

Bangla script. K-word uses QT rendering engine, 

which is under research. OpenOffice.org is a huge 

project conducted by Sun Micro systems and it comes 

with Redhat Linux as a free Office program. There is a 

project called Localization of OpenOffice.org, which 

is conducted by several voluntary teams working all 

over the world. So it was easy for us to get hold of a 

lot of information regarding integration of components 

into OpenOffice.org before we could start the project. 

In this paper we have not discussed about localizing 

OpenOffice.org rather Bangla-computing integration 

into OpenOffice.org. OpenOffice.org provides 

flexibility for which anyone can add components to it 

through component based API called UNO (Universal 

Network Object). 

 

3. Connection of client program to 

OpenOffice.org through UNO 

 
Universal Network Objects or UNO is the base 

component technology for OpenOffice that is designed 

to write client components that interact with 

OpenOffice.org across languages, platforms and 

networks.  [2] UNO is currently supported on Linux, 

Solaris, and Windows for the Java and C++ 

programming languages. It is quite reasonable to write 

components using UNO that extend the functionality 



of OpenOffice.org without changing the base system at 

all. In fact, one can write complete applications that 

use OpenOffice.org as the backend application, or use 

OpenOffice.org services and relay that to the user.  

 

4. Remote connectivity to OpenOffice.org 
 

Since UNO allows clients to remotely interact with 

OpenOffice.org, this section looks at how the remote 

connectivity is established. Since remote clients 

communicate over a TCP/IP socket, OpenOffice.org 

must be told to listen for incoming TCP/IP 

connections on a given port. It can be done on each 

invocation of OpenOffice.org, or made effective for all 

future invocations. The process for each is shown 

below; see [1] and [2] for details on the configuration 

changes required. To make OpenOffice.org listen for 

network connections on all future invocations, first 

open the file 

<OfficePath>/share/registry/data/org/OpenOffice.org/

Setup.scu and look for the element Office. Add the 

appropriate host and port parameters to its 

ooSetupConnectionURL property. An alternative is to 

add “accept=socket,port=8100;urp” to the command 

line when invoking OpenOffice.org, telling it to listen 

on the given port for incoming connections. This is of 

course only effective for the current session, and does 

not affect other running instances, if any. 

 

5. Client program for connectivity 
 

The following code, taken verbatim from [3], 

shows how to write a simple client that connects to 

OpenOffice.org remotely.. 

 
import com.sun.star.bridge.XUnoUrlResolver; 
improt com.sun.star.uno.UnoRuntime; 
import com.sun.star.uno.XComponentContext; 
import 

com.sun.star.lang.XMultiComponentFactory; 
import com.sun.star.beans.XPropertySet; 
 
public class FirstConnection extends 
java.lang.Object{ 
private XcomponentContext xRemoteContext = 
null; 
private XmultiComponentFactory 
xRemoteServiceManager = null; 
 

public static void main (String[]args) { 
FirstConnection firstConnection1 = new 
FirstConnection(); 
try{ 
   firstConnection1.useConnection(); 
} 
catch (java.lang.Exception e){ 
e.printStackTrace(); 
} 

finally { 
System.exit(0); 

} 
} 
 
protected void useConnection() throws 
java.lang.Exception { 
 
try{ 
 xRemoteServiceManager = 
this.getRemoteServiceManager(   

     “uno:socket, 
host=localhost,port=8100;urp; 
StarOffice.ServiceManager”); 
String avaialable =(null 
!=xRemoteSserviceManager ?”available” : “not 
available”); 
System.out.println(“remote ServiceManager is 
“+ available); 
// 

/// do something with the service manager 
.... 
/// 
} 
catch 
(com.sun.star.connection.NoConnectException 
e) { 
System.err.println(“No process listening on 
the resource”); 
e.printStackTrace(); 

throw e; 
} 
catch (com.sun.star.lang.DisposedException e) 
{ 
xRemoteContext = null; 
throw e; 
} 
} 
 

protected XmultiComponentFactory 
getRemoteServiceManager (String unoUrl) 
throws java.lang.Exception { 
 
if (xRemoteContext = null) { 
// First setp: create local component 
context, get local servicemanager and 
// ask it to create a UnoUrlResolver object 
with an XunoUrlResolver interface 

XcomponentContext 
xLocalContext=com.sun.star.com.helper.Bootstr
ap.createInitialComponentContext(null); 
 
XmultiComponentFactory xLocalServiceManager = 
xLocalContext.getServiceManager(); 
Object urlResolver = 
xLocalServiceManager.createInstanceWithContex
t(“com.sun.star.bridge.UnoUrlResolver”, 
xLocalContext); 

 
XUnoUrlResolver xUnoUrlResolver = 
(XUnoUrlResolver) 
UnoRuntime.queryInterface(XUnoUrlResolver.cla
ss, urlResolver); 
 
Object initialObject = 
xUnoUrlResolver.resolve(unoUrl); 
XPropertySet xPropertySet = (XPropertySet) 

UnoRuntime.queryInterfac( XpropertySet.class, 
initialObject); 
Object context = 
xPropertySet.getPropertyValue(“DefaultContext
”); 
xRemoteContext = (XComponentContext) 
UnoRuntime.queryInterfac(XComponentContext.cl
ass, context); 
} 



return xRemoteContext.getServiceManager(); 
} 
} 

 

6. Integration of search & replace client 

program 
 

 
 

Figure 1: Bangla document before replacement 

 

 
 

Figure 2: Bangla document after replacement 

 

OpenOffice has its own search and replace utility 

but it has some problems especially regarding handling 

of Bangla scripts. Its search and replace dialog box can 

not display Bangla letters even though it can accept 

Unicode code points of Bangla letters and do rest of 

the task accordingly. But from the user's perspective it 

is a major concern to let the user view what he/she 

types in. So after considering this issue a component 

has been developed and can be added to 

OpenOffice.org through remote connection to the 

OpenOffice.org for search and replace for Bangla. 

 

7. Integration of Bangla Spellchecker 

program 
 

 
 

Figure 3: Bangla Spellchecker in editor 

 

 
 

Figure 4: Checking and replacement of misspelled 

word 

 

OpenOffice doesn't provide dictionary for Bangla. 

And it has the similar problem as we discussed before 

for search and replace dialog box. So it has been felt to 

develop a spell checker for Bangla. And like the 

previous one it is also a client program written in java 

and can be connected to OpenOffice.org remotely and 

can check spelling of any Bangla word document 

loaded in OpenOffice.org. The spell checker maintains 

a Bangla lexicon of about more than 50,000 words. It 

searches the lexicon for match of each word in the 

document for spellchecking decisions. If wrong word 

is typed the speller identifies it highlights the wrong 

word. The user has the option to replace it with the 

right word or ignore it when the spellchecker program 

is invoked. 

 

8. Integration of Bangla OCR client 

program 
 



 
 

Figure 5: Bangla OCR interface – loading image 

containing Bangla words 

 

 
 

Figure 6: Bangla OCR – Producing the words in an 

editor 

 

 
 

Figure 7: Comparison of the image and document 

after OCR program function 

 

It is a very good demonstration for convincing 

ourselves about how useful it is to develop a 

component using UNO. Bangla OCR driver has been 

developed in our team and with the help of that driver 

a scanned image of Bangla document has been read 

and produced as text in a Bangla document which can 

be displayed and edited in OpenOffice.org through the 

component developed using UNO in Java. The 

computer that is plugged to scanner doesn't need have 

OpenOffice.org installed but still capable of displaying 

the document by remotely connecting to 

OpenOffice.org resided in another computer. 

 

9. Problems associated with 

OpenOffice.org 
 

The main problem associated with 

OpenOffice.org is its rendering engine’s capability of 

displaying Bangla letters. There is another problem 

that limits the Bangla text processing in 

OpenOffice.org, is its unsynchronized forward and 

backward movement of cursor. For this problem, the 

replacement, deletion operations are hampered.  

 

10. Acknowledgement 
 

This work has been partially supported through 

PAN Localization Project (www.PANL10n.net) grant 

from the International Development Research Center, 

Ottawa, Canada, administered through Center for 

Research in Urdu Language Processing, National 

University of Computer and Emerging Sciences, 

Pakistan.  

 

11. Conclusion 
 

Our aim is to work further for integrating several 

other small applications and tools and to eradicate the 

persisting problems in Openoffice.org. We hope our 

work will lead the way in localization efforts of Office 

programs to work for Bangla. 

 

12. References 

 
[1] OpenOffice, available online at 

www.openoffice.org 

 

[2] OpenOffice Java UNO Reference, available online 

at http://api.openoffice.org/docs/java/ref/overview-

summary.html 


