
Rendering in Dzongkha

Pema Geyleg

Department of Information Technology
pema.geyleg@gmail.com

Abstract

The basic layout engine for Dzongkha script was

created with the help of Mr. Karunakar. Here the

layout engine could not support reordering and was

not efficient. However the layout engine was further

customized to be efficient and specific for Dzongkha

script only.

1. Introduction

One of the dictionary meanings of rendering is

converting the coded content to a required format for

display or printing. For instance, an HTML page is

officially rendered by displaying it. Of all the different

meanings for rendering,this was the one which shared

similar meaning to the one that I needed to speak of.

However we will be concerning with the rendering of

different scripts by software. That is how different

scripts are displayed by particular software.

There are scripts like Hebrew which is written from

right to left, Thai where two characters changes places

while being rendered called reordering and doesn’t get

displayed in the sequence typed by the user. Then there

is Dzongkha script which is written from left to right

with lots of stacking above and below the base

character. This leads to the question of how do the

software display different scripts.

 All these work are being done by the rendering

engine or layout engine incorporated by that particular

software. Here it identifies the script that the user

wants, and displays the text using that script correctly.

2. Methods

2.1. Why! We need it?

The answer in the nutshell would be to have ones

script displayed/ rendered correctly.

 The software developers use the most common

and the least complex script called the Latin scripts

especially to write English. The Latin script displays

the glyphs for character from left to right in order to

store in memory.

The “complex scripts” requires complicated

rendering behaviour and the text written in these scripts

are called “complex text”. Examples of complex scripts

are:

� Indic scripts(Devanagiri, Tamil, Telegu, and

Gujurati).

� Thai

� Dzongkha

� Arabic.

Usually most software comes with rendering

support for Latin script. However most software does

not come with support for Dzongkha script, for

instance the rendering engine for the Latin script is not

enough to support the proper display of complex

scripts.

In that case we need to incorporate our script

support in the software either by developing one for

open source software or ask them to include it if the

software does not fall under open source.

2.2. Types of rendering engine

Few names of rendering engines found in different

software are as follows.

• Uniscribe is used by the Microsoft software.

• Pango: Pan in Greek means “all” and go in

Japanese means “language”. It is also an

Open-source framework for layout and

rendering of internationlized text.The Gnome

applications use it for rendering.

• ICU Layout engine: ICU stands for

International component for Unicode

Maintained by IBM and this rendering engine

is being used in Open office application.

2.3. How does it work?

The prerequisite for the rendering engine in any

software are as follows:

• The particular script should be supported by

the software. Here most languages use scripts

encoded in the Unicode & ISO 10646

Standards.

• A working font for that script should exist.

Open type fonts are preferred here due to its

compatibility with most of the software.

• A keyboard driver for that script should be

developed.

The font for a particular script contains rules falling

under two main categories called “GPOS” (glyph

positioning) and “GSUB” (glyph substitution). Then

there are features like “ccmp” (composition and

decomposition), “blws” (below base substitution) etc.

falling under GSUB rule. Other features like:

“blwm”(below base mark positioning)

� “abvm”(above base mark positioning)

� “kern” etc.

fall under GPOS rule.

The fonts may contain language tags for the

languages they support. All combinations of characters

used by particular languages are accessed by rules or

lookups defined in the fonts.

The rendering engine has to identify the script,

select the fonts, apply correct rules from the fonts and

display it.

The stages of rendering or layout engine are as

follows:

• User input is stored in a buffer/memory.

• Identify a script by looking at the Unicode

values in the buffer.

• Determine the bidirectional levels for the text.

• Update the language tag using information.

• Decide upon a language engine from the

updated language tag and script.

• Decide upon a set of possible fonts from

updated language tag and font properties for

the character.The sorting of these fonts are

achieved on the basis of how well they match

the language tag and font properties.

• Apply the rules defined in the font to the

Unicode values stored in the buffer.

• Do character, word, line boundary analysis.

The output of this process is usually per line which are

then fed into the renderer.

3. Results

3.1. Encoding Model for Dzongkha script

3.1.1. Regular and Combining Consonants

The Dzongkha script text consist of frequently

occurring vertically combined conjuncts of consonants

and vowels. However, whether or not two neighbouring

characters stack vertically or be written left to right,

one following the next, cannot always be determined

by simply applying contextual or grammatical rules.

For this reason and also because of the frequency and

complexity of these vertical conjuncts in Dzongkha

text, a model, which is different from the one adopted

for Devanagiri and other Indic scripts, was adopted

while encoding Dzongkha script in the UCS. This

Dzongkha encoding model is an explicitly stacking

model.

The UCS consists of two complete sets of

consonants, which are encoded as separate characters:

� first set of headline consonant characters

[U+0F40-U+0F6A], used for single

consonant or for consonants occurring in the

topmost position of any conjunct stack;

� and secondly, a set of combining consonant

characters [U+0F40-U+0F6A], used for all

additional consonants occurring in a stack.

The characters for Dzongkha vowels, normally

written as marks combining with or dependent on

consonants or consonant stacks, are encoded between

these two sets of consonants [U+0F71-U+0FB1] in the

UCS.

3.1.2. Character Order

The order for encoding the conjunct stacks are in the

order of the parts written, first the character for

consonant in the topmost or headline position, and the

characters for any combining consonants following that

and then the character(s) for any vowel(s):

Figure 1: Conjunct Stacks

That way, it is possible to represent very long stacks

which are found in some religious texts:

Figure 2: Long Stacks in Religious Texts

After entering or writing the final below base letter,

then entering or writing the vowels or marks occurring

above a base glyph from the top of the first consonant

upward, is how the stacking is normally done:

Figure 3: Vowel Stacking

3.1.3. Syllables & Encoding

The “tsheg” bar, usually known as a “syllable” is

the basic unit of meaning or morpheme in Dzongkha.

Words consist of one or more syllables or tshegs.

Figure 4: Syllable Format

Each syllable contains a root letter (ming zhi)

which may have any or all of the following parts,

additionally :prefix, head letter, sub-fixed letter, vowel

sign, suffix, and post-suffix. The syllables are normally

delimited by a tsheg or another punctuation character

and there are no inter-word spaces in Dzongkha.

The base or root glyph in a dzongkha stack discussed

in OpenType rendering for Dzongkha should not be

confused with the base or root letter (ming zhi) in a

Dzongkha syllable(tsheg bar).

3.1.4. Special Characters

U+0F0c O BREAKI$G TSHEG

The properties of normal Tsheg character

(U+0F0B) in the Unicode Standard shows that the

text-processing applications may wrap a line after any

occurrence of this character, meaning that this

character provides a line breaking opportunity.

Sometimes, a tsheg occur after the letter nga and

before a shad, in which case its desirable to oppress

this behavior.So in such cases, the non-breaking tsheg

(U+0F0C) [inappropriately named “delimiter tsheg”]

can be used.

U + 0F6A FIXED FORM RA

In place of RA(0F62), the character FIXED FORM

RA(U+0F6A) is used to override the normal

contextual shaping of RA:

� � � � � � � 	
 � � །
Figure 5: Fixed Form RA

U+0FBA, U+0FBB, U+0FBC: FIXED FORM

SUB-JOI$ED WA, YA & RA

Similarly, there are fixed form variants of the sub-

joined consonant like WA, YA and RA which should

be used only when it is necessary to override normal

contextual shaping behaviour:

Figure 6: Fixed Form WA, YA & RA

It's is important to note that 0FAD, 0FB1 and 0FB2

should not always be rendered in short form. Hence the

WA, YA and RA occurring mid-stack are normally

written in their full form.

U+0FC6 DZONGKHA SYMBOL PADMA GDAN

It is an unusual combining symbol character, and can

be used to combine with letters or other symbols.

This character are normally entered after the sequence

with which it combines:

Figure 7: SYMBOL PADMA GDA:

3.2. Features for Dzongkha Fonts

The 4 stages for an Open Type shaping engine for

Dzongkha processes text:

1. Analyzing syllables.

2. Reordering characters.

3. Shaping (substituting) glyphs using GSUB

features & lookups in the font.

4. Positioning glyphs using GPOS features &

lookups in the font.

3.3.Analyzing the syllables

The Dzongkha syllable units, that are received by the

shaping engine for the purpose of shaping, are

sequential strings of UCS characters. The characters

may not be in the sequential order in the order of which

they need to be rendered when composing a stack of

syllable. First,the shaping engine should identify the

first consonant in each stack and then classify all other

elements, according to their position that are relative to

this character.

Figure 8: Analyzing the Syllables

3.4. Reordering Characters

The shaping engine creates and manages a buffer of

character codes, that are grouped into “clusters”

corresponding to Dzongkha the tsheg-bar. And if

necessary, the characters are recorded within this

clusters according to the script-dependant rules. Then

next, a glyph string, corresponding to the character is

obtained by mapping characters in sequence to their

nominal glyph forms. And all subsequent Open Type

lookups are based on these glyphs, not on the

underlying characters.

Dzongkha is written from left to right and within

Dzongkha words and syllables, there are often vertical

stacks of consonants that are written from top to bottom

and then any vowel signs applied to the stack are

written from bottom to top.

• head position consonant (U+0F40-U+0F6A,

U+0F88, U+0F89)

• tsa 'phru (U+0F39) [if any]

• sub-joined consonants (U+0F90-U+0FBC)[if

any]

• sub-joined a-chung U+0F71 [if any]

• sub joined vowel zhabs-skyu U+0F74[if any]

• srog med ('halant') U+0F84 [if any]?

occasionally used for Sanskrit transliteration

• above base vowel(s) U+0F71, U+0F7A -

U+0F7E [if any]

• above base U+ 0F82 or 0F83

• other above base marks (0F86, 0F87)

The Bhutanese are taught to write the part of stack

in this order and also it's the best order for shaping

Dzongkha. Also in Dzongkha, it is important to shape

the below base conjunct before the above base, as

shaping of above base glyphs may be dependent on the

final shape of the complete below base conjunct.

3.5. Shaping Glyphs

After the characters have been recorded and

mapped to their glyph forms, then the next step taken

by the shaping machine is to apply contextual shaping

or glyph substitution(GSUB) features to the glyph

string.

For the Microsoft Windows, Uniscribe (shaping

engine) does this, by calling the Open Type Layout

Service Library to shape the Dzongkha syllable.

All the OpenType processing are divided into set of

features that are defined in OpenType specification and

each feature is applied ,one by one ,to appropriate

glyphs in the syllable.

For instance, in Microsoft Windows,Uniscribe makes

as many calls to OTL Service Library as there are

lookups for each feature, which ensures that the

lookups will be executed in the desired order.

3.5.1. Shaping Features:

• Glyph Composition Decomposition: To

preprocess any glyph that require composition

or decomposition, apply lookups under 'ccmp'

feature.

• Conjuncts: To create conjuncts or ligatures,

apply lookups under 'blws' feature.

• Below-base Marks: To get any additional

below-base combining consonants and any

below-base vowel marks; and other below-

base marks, apply additional lookups under

'blws' feature.

• Above-base Marks: To get any above-base

vowel conjuncts; above-base vowel modifiers;

and above-base marks, apply lookups under '

abvs' feature.

3.6. Positioning Glyphs

 After the shaping or substitution features have

been done ,the shaping engine will apply

GPOS(OpenType Positioning) features to position

glyphs.

3.6.1. Positioning Features:

• Applying the lookups under 'blwm' feature to

position dependent below base marks.

• Applying lookups under 'abvm' feature to

position the dependent above-base marks.

• Applying lookups under 'kern' feature to

adjust spacing of base glyphs or conjuncts

with respect to each other.

4. Discussion

Dzongkha script is now supported from ICU 3.6

and Pango 1.8. Microsoft's Uniscribe also support

Dzongkha script.

Dzongkha computing is now possible in Open

Office and Gnome Applications in Linux operating

system.

5. Conclusion

There are different rendering engines being used by

different open source software applications. Open

Office uses ICU layout, Gnome application uses Pango

and Mozilla uses its own rendering engine. We can

customize these rendering engines to include support

for different scripts. It would have been nice if we

could have a single rendering engine for all the

applications.

However Microsoft uses Uniscribe as a renderer or

Open Type layout engine for all its applications. We

don’t have the option of customizing it for our needs.

We have to depend on the people in Microsoft to

decide whether they would like to incorporate support

for our script.

6. References

[1] “Pango Layout Engine” www.pango.org

[2] “Layout Engine” www.icu.sourceforge.net/

userguide/layoutEngine.html

[3] “Uniscribe” www.microsoft.com/ typography/

developers/uniscribe/default.htm

