
Encoding Conversion Utility for Khmer 
 

Chea Sok Huor, Atif Gulzar, Ros Pich Hemy, Neak Longchrea 

csh007@gmail.com, atif.gulzar@gmail.com, pichhemy@gmail.com, longchrea@gmail.com 

 

  

Abstract 
 

This paper discusses the research on the 

encoding conversion from Khmer non-Unicode fonts 

such as Limon, KHEK etc. into Unicode. The 

document is divided into three main sections. Section 

2 discusses the analysis of the non-Unicode font 

representation and the conversion technique. Section 

3 presents the result of the studies. Section 4 

discusses the findings and implications of the work 

that will present all the cases that have not been 

handled yet. 

 

1. Introduction 
 

According to the Unicode Standard Version 4.0 

from the Unicode Consortium Khmer script, called 

aksaa khmae (“Khmer Letters”), is the official script 

in Cambodia. It is descended from the Brahmi script 

of South India, as are Thai, Lao, Myanmar, Old 

Mon, and others. The exact sources have not been 

determined, but there is a great similarity between 

the earliest inscriptions in the region and the Pallawa 

script of the Coromandel Coast of India. Khmer has 

been a unique and independent script for more than 

1,400 years.  

 

Before the creation of Khmer Unicode, Khmer 

used Latin code to represents its characters. Many 

fonts are being created to facilitate the office task. 

Consequently, there is no standard for representation. 

A character can be represented in two different codes 

for two different fonts. As a result, data transfer 

across fonts is impossible. This leads to the invention 

of Khmer Unicode and the development of a tool to 

convert from those non-Unicode font documents to 

Unicode format, which is an indispensable task. 

 

Grammatically, Khmer syllable must respect the 

spelling order. Since the non-Unicode fonts input 

method is very flexible, users can combine whatever 

they want without respecting the meaning and 

spelling orders, and the task of the conversion is a 

challenge task. The rest of this paper will present a 

detailed technique for the conversion and the results 

of the research. 

 

2. Method 
 

2.1. Architecture of the application 
 

  To ensure the user-friendliness, the embedded 

applications for MS Office are proposed. The system 

will be developed by dividing its functionalities into 

three main modules: MS Office Suite, Automation 

Application, and Conversion Assembly. Figure A.1 

of Appendix A illustrates the system. 

- MS Office suite: is the existing MS Office suite 

(Word, Excel, FrontPage, Power Point, Outlook 

and Publisher).  

- Automation application: All the applications 
in this module act as the intermediate between the 

conversion assembly and MS Office suite. Its 

tasks are to get the content of the document to be 

converted from the MS Office suite into 

conversion assembly, to replace the converted text 

to MS Office suite, and to keep the format of the 

converted document the same as the previous one. 

- Conversion Assembly is the core module of 
the system. Its main function is to convert a non-

Unicode text into Unicode format. The rest of this 

paper will discuss this module, as it is an 

important part. 

 

2.2. Problem in Khmer non-Unicode writing 

technique 
 

Since there is no standard to assign the character 

among Khmer non-Unicode fonts, many problems 

occur for the representation.  

 

- Some words can be written in different ways. 

For example, the word ₤НБ (SI) can be 
represented as the sequence of ₤ (SA), ˘Н 
(SRAK U) and Б̆ (SRAK II) and also the 
sequence of ₤ (SA), ˘Б (SRAK II) and ˘Н 
(SRAK U). 



East 

Subscript 

 

West 

Subscript 

 

South 

Subscript 

 

Consonant 

Figure 1: Khmer non-Unicode subscript rendering 

- Some commonly used words or syllables are 

represented in one code. For example, in 

Limon and ABC font families, the word ŠńОе 
(KNYOM) is assigned to one code. 

 

- A character can be written by combining 

many characters. For instance, In Limon and 

ABC fonts the character ŀ (NYO) can be 
written as a sequence of Į (PO) ˘Љ (SRAK 
A) ˘ń (COEUNG NYO). 

 

2.3. Khmer non-Unicode fonts script 

presentation analysis 
 

The representation of Khmer characters in 

Khmer non-Unicode font is categorized into 7 main 

groups: consonant, subscript, dependent vowel, 

consonant shifter, various sign, independent script, 

and special script 

 

2.3.1. Consonant  
It is the main character for every of Khmer syllable. 

The consonant can be divided into three main 

groups, the consonants that can be used with 

MUUSIKATOAN such as ₣ ŀ ĕ Ħ Ŏ ũ Ų ŷ Ā, the 
consonants that can be used with TRIISAP such as 

₤ ΅ Β Ā. The rest cannot be used with both 
consonant shifters.  

 

2.3.2. Subscript (also, called coeng (literally, “foot, 

leg”)) 

They are found on the left, right or bottom of the 

main consonant.  

Khmer non-Unicode subscript can be divided into 3 

categories according to its rendering position related 

to consonant as illustrated in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3. Dependent vowels  

Dependent vowels usually follow main consonant or 

subscripts because it cannot stand alone in Khmer 

writing. Khmer non-Unicode dependent vowel can 

be divided into 4 categories according to its position 

and the input sequence in non-Unicode font.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problems with east vowels: The vowels that are 

visibly positioned on the east side of the base 

consonant are called east consonants. Since the non-

Unicode font unable user to type a west-east vowel 

in one key stroke, its combinations are used. For 

example, in order to get the vowel “Ю˘д”, non-
Unicode font user has to type parts of this vowel: 

ãЮ˘å and the incomplete character AU.  
 

2.3.4. Consonant shifters 

 

Khmer consonant characters and signs are basically 

divided into two sounds –a and –o in Khmer 

language. Consonant shifter signs are used to shift 

between the two sounds. There are two consonant 

shifters: л̆ (KHMER SIGN MUUKSIKATOAN) and ˘п 
(KHMER SIGN TRIISAP).  

- KHMER SIGN MUUKSIKATOAN ˘л shifts sound 
of a consonant character or sign from the second 

from –o to –a.  

- KHMER SIGN TRIISAP ˘п shifts sound of a 
consonant character or sign from the second 

from –a to –o 

East 

Vowel 

West  

Vowel 

South 

Vowel 

Consonant 

(With subscripts, 

MUSSIKATOAN 

or TRIISAK) 

North 

Vowel 

Figure 2: Khmer non-Unicode dependent vowel 

rendering 



 

2.3.5. Independent scripts  

In Khmer non-Unicode font, the characters in this 

category refer to those characters that can be 

replaced or converted directly regardless of the 

position, order of combination rule. This category 

comprised of Independent vowels, currency symbol, 

digit etc… 

 

2.3.6. Various sign 

Various signs are always put at the end of the 

orthographic syllable in Khmer language. 

 

2.3.7. Special script  
The type refers to Khmer non-Unicode characters or 

words that do not exist in the Khmer Unicode range. 

For examples: the word ŠńОе, in Limon or ABC fonts, is 
only one code and one keystroke. However, it should 

be written sequence of Š ˘ń˘ń̆ń˘ń ˘Н  ˘Н  ˘Н  ˘Н and ӗӗ̆ еӗ....        
 

Remarks: Since the writing rule in non-Unicode is 

not strict, some words or character can be typed or 

represented in many different ways. For example, ĵ 
is a variation of ŀ when it is used with subscript. In 
ABC and Limon font writing behavior, it is a 

combination of Į + ˘Љ.  
 Another example is the case of “incomplete 

AU”. There is no Unicode represented for this 

character because it is part of Khmer dependent 

vowel Ю˘д (SRAK AU).  
 

2.4. Conversion algorithm 

  

 The conversion process is decomposed into 

two main tasks independently: 

1. First, the input non-Unicode sentence is 

converted to Unicode sentence, but it 

remains in the same order as the non-

Unicode sentence. This sentence is called 

Common Script Sentence (CSS). In order to 

enable the conversion of different fonts, an 

engine is generated for each font family. 

The main task of each engine is to translate 

the non-Unicode character into 

corresponding Unicode character. 

2. Then, the conversion assembly reorders the 

sentence or CSS according to Khmer spelling 

order.  

For example: 

Input sentence: ЮÐЮŪşЭ₣ 
The sequence of the sentence is  

Ю˘ Ð Ю˘ Ū˘ ş ó ₣ 
 First, the sentence is converted into Common 

Script Sentence (CSS) as the following picture. 

Ю˘ Ð Ū˘ ş Ю˘Ь ₣ 
 Finally, the CSS is reordered according to 

Khmer spelling order as the following picture. 

Ð Ю˘ Ū˘ ş Ю˘Ь ₣ 
The problem of reordering the sentence into 

Khmer spelling order is a complex task and will be 

discussed in the rest of this section. 

 

2.4.1. CSS reordering  

Since there is no marker between Khmer words, the 

main process of the CSS reordering is to first 

decompose the CSS into different inseparable units 

and then reorder each unit according to spelling 

order. In Khmer language, Orthographic syllable is 

the main component (inseparable unit) in writing. 

The rule for forming the unit is precise. It can be a 

block of consonant, consonant shifter and subscripts 

surrounded by a block of vowel and various signs. 

The structure of the orthographic syllable 

combination is illustrated in the Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Structure of the orthographic syllable 

combination 
The rule for ordering the orthographic syllable 

in Khmer non-Unicode writing is given as follows in 

terms of types of character: 

 

3 

2 

1 

1 

2 

3 

1 2 2 1 

 

 

  

1: Consonant Shifter 
2: Dependent Vowel 

3: Various Sign 

 

1: South Subscript 
2: East or West Subscript 

3: Dependent vowel 

1: Subscript,  

2: Dependent vowel 

A Consonant 



1. Consonant 

2. First subscript 

3. Second subscript 

4. Consonant shifter 

5. First vowel 

6. Second vowel 

7. Third vowel 

8. Various sign 

Subscript priority 
- South subscript 

- East subscript  

- West subscript  

Vowel priority 
- North vowel or east vowel 

- West vowel 

- South vowel 

 

2.4.2. Orthographic syllable detection  

The major problem for the CSS reordering is how to 

detect the orthographic syllable. Our main idea to 

solve the problem is to detect the transition state for 

each character of an input string. If there is no 

possible transition for any character, it means that 

the end of syllable is reached. Therefore, there is a 

need to analyze all the possible input in non-Unicode 

font writing behavior and create a possible transition 

lookup table as shown in Table 1 (also see Table 2). 

 

Table 1: Possible transition lookup table 

 

  C CS WV NV SV EV WSS SSS ESS VS 

C 0 1 0 1 1 1 0 1 1 1 

CS 0 0 0 1 1 1 0 1 1 0 

WV 1 0 0 0 0 0 1 0 0 0 

NV 0 1 0 0 1 0 0 1 0 0 

SV 0 1 0 1 0 1 0 1 1 1 

EV 0 1 0 1 0 0 0 0 0 1 

WSS 1 0 0 0 0 0 0 0 0 0 

SSS 0 1 0 1 1 1 0 0 0 1 

ESS 0 1 0 1 1 1 0 0 0 1 

VS 0 0 0 0 1 0 0 1 0 0 

 

Table 2: Abbreviation Chart (Initial states are 

WV, WSS and EV) 

 

 Shortcut Abbreviation 

C Consonant 

CS Consonant Shifter 

WV West Vowel 

6V North Vowel 

SV South Vowel 

EV East Vowel 

WSS West Subscript 

SSS South Subscript 

ESS East Subscript 

VS Various Sign 

 

6ote: In the possible transition lookup table: 

− Zero means �OT Possible transition and 

one means possible transition. 

− The current state is in ROW. 

− The transition state is in COLUMN. 

 

Example of the CSS reordering process: 

Input string: ⅜ŵ Ś̋Б 
The scenario: 

- First of all, ₤ is kept as current state 
- The next character is ˘Љ. According to the table 

above, there is possible transition from ₤ to 
˘Љ. Therefore, ˘Љ is kept as the current state 
and the method goes to the next character. 

- The next character is the consonant Ų. There is 
no possible transition from the current state 

(˘Љ) to the consonant Ų. It means that the 
terminator is reached and the sequence of ₤ 
and ˘Љ is the orthographic syllable.  

- The process is restarted from the character Ų 
by doing the same process as above. 

 

2.4.3. Font dictionary concept  
To ensure the extensibility and optimization, all the 

codes of the non-Unicode and its Unicode 

correspondent of each font family are stored in a file 

called the dictionary file. When the conversion 

assembly is loaded, the data in the dictionary are 

read and stored temporarily in the application. 

Therefore, many files are created according to the 

number of font families. 

The structure of the files is as follows: 

- Each line of the file represents one code of the 

Khmer script. 

- A tab separates each section of the line. 

- A line, which starts with #, is a comment line. If 

the assembly sees this in front of the line, it will 



directly skip it. Therefore, the user can add as 

many comments as needed.  

Data line of the dictionary is represented as shown in 

Figure 3. 

 

 

 

 
Figure 3: Dictionary data line representation 

 

� 6on-Unicode code: this section is to store the 

code of the non-Unicode font in hexadecimal. 

� Unicode code: this section is to represent the 

code, hexadecimal format, corresponding to the 

non-Unicode code of the same line.  

� Types of the character:  In the application, the 

Khmer letter is categorized into 14 types:  

1. Normal consonant 

2. Special script 

3. Independent script 

4. Consonant shifter 

5. West subscript 

6. East subscript 

7. South subscript 

8. West vowel 

9. East vowel 

10. South vowel 

11. North vowel 

12. Various sign 

13. Consonant that can be used with 

MUUSIKATOAN 

14. Consonant that can be used with TRIISAP 

 

2.5. Problems and solutions 

 
2.5.1. Special scripts problem  
Some characters in non-Unicode font cannot be 

mapped to Khmer Unicode. For example, ŠńОе in 
Limon or ABC fonts is only one code (one 

keystroke). In fact, in Unicode, it is represented by Š 
+ ˘ń + Н̆ +˘е. 
  The problem is handled by giving each special 

script a code, which is not redundant with other 

Khmer Unicode range and other Unicode.  

 

2.5.2. Some special case problems  
Since the rule in the non-Unicode is not strict, some 

word or character can be typed and represented in 

many different ways. Therefore, it is a big problem 

for the conversion tasks. As an example: ĵ is a 

variation of ŀ when it is used with subscript. In 
ABC and Limon font, it is a combination of Į + 
˘Љ. Another example is the case of incomplete vowel 
sign as mentioned earlier in this paper. This kind of 

character does not exist in Unicode. Therefore, if it is 

found alone, the system will convert it directly to 

complete character. 

The problem is solved in the engine of each font 

since different problems occur in different fonts.  

 

2.5.3. Some special case problems  

Consonant shifters shift the base consonant between 

registers. Many problems are found concerning with 

consonant shifter.  

- First, in Khmer language, the representation of 

scripts is not totally the same as its spelling 

order. For example, the word ₤НБ (SI) can be 
represented as the sequence of ₤ (SA), ˘Н 
(SRAK U) and Б̆ (SRAK II) and the sequence of 
₤ (SA), Б̆ (SRAK II) and ˘Н (SRAK U). The 
correct sequence is ₤ (SA), п̆ (TRIISAP) and ˘Б 
(SRAK II). 

- Second, not only the register reflects the base 

consonant, it also reflects the subscript.  

- Finally, in Unicode order, if user visibly wants 

to keep the shifter in the script, the “ZERO 

WIDTH NON JOINER” must be added. For 

example ĀпГ = Ā+˘п+ ZERO WIDTH NON 
JOINER + ˘Б 
In order to solve the problem, we need a careful 

study on the usage of Khmer consonant shifter. The 

steps to solve the problem are to: 

1. Identify the consonants that can be used with 

TRIISAP and the consonants that can be used 

with MUUSIKATOAN.  

2. Create a general rule for the order of scripts with 

respect to the Khmer script grammar.  

- The priority of the register reflection: As 

described in the problem above, not only 

the consonant that can be reflected by the 

register, the subscripts also. Hence, the 

main problem is to decide which one is 

affected by the consonant shifter if the 

syllable contains both consonant and 

subscript. According to our studies, the 

Type of the 

Character 
Non-
Unicode  

Unicode  

Correspondent 



most common priority order is second 

subscript, first subscript, consonant that can 

be affected by MUUSIKATOAN and 

TRIISAP. 

- Zero width non-joiner detection: The 

decision for inserting a ZWNJ is to look in 

the combination buffer if it contains a 

consonant shifter, consonant or subscript 

that can be affected by register and a north 

vowel. There is exception for the north 

vowel SRAK_AM. There is a need to 

consider if the east vowel is SRAK_AA or 

not. If east vowel is SRAK AA, then ZWNJ 

is added. 

- Detect a consonant shifter from a non-

Unicode combination: As showed in the 

first problem, the system has to detect the 

consonant shifter during the conversion. 

The solution to the problem is to look in the 

combination buffer if there is consonant or 

subscript and north vowel when we meet 

SRAK_U. If it completes the condition, it 

means there is consonant shifter in the 

Unicode combination. 

 

3. Experiment result 
 

 In our experiments, we tested the system 

performance of the approach with different non-

Unicode font documents. The total size is around 

5MB. The approach has achieved a rate over 95 

percent. Mostly, the case that had not been converted 

correctly is not accepted semantically and visibly in 

Khmer script and grammar.   

 

4. Discussion 

 

4.1. The case of consonant ΌΌΌΌ ( ( ( (LA)))) 
  

 Some non-Unicode users type and represent this 

letter by typing ◦ (TO) and ˘ā (Subscript of BA). 
The visibility of the sequence is different from the 

correct character. Therefore, the sequence is not 

converted to the character Ό, but it remains the 
sequence of ◦ (TO) and ˘ā (Subscript of BA). 
 

 

 

 

 

4.2. SRAK AA_M  ˘Ље ˘Ље ˘Ље ˘Ље  and consonant shifter 

 
The problem can be illustrated with an example 

of the word ⅜Н е. In Khmer spelling order, this word 
is the combination of ₤, ˘п, Ј and ˘е. However, in 
Khmer non-Unicode font, the user can represent it in 

three ways: 

1.  ₤ + ˘Н+ ˘Љ + ӗ     �  ⅜Н е   
2.  ₤ + ˘Љ + ˘е + ˘Н   �  ⅜Н е 
3.  ₤ + ˘Љ + Н̆ + ˘е �  ⅜Н е   

 The system does not convert the third case to the 

sequence of ₤, ˘п, Ј and ӗ, but to the sequence of ₤ 
˘Љ Н̆ ˘е. The reason is that the system uses graph to 
determine the terminator. Therefore, providing the 

ability to handle the case might affect many other 

cases.  

 

4.3. Consonant 6YO “ŀŀŀŀ” 

 
 As described in the second section, non-

Unicode users can represent the letter NYO in 

many different ways:   

1. ŀ 
2. Į    +  ˘Љ +  ˘ń  �  ŀ 
3. Į    +  ˘Љ       �  ĵ 
4. Į  +  ń̆  +  ˘Љ   �  µЉ 
The system does not convert the fourth case to 

the character ŀ, but to the sequence of Į ˘ń ˘Љ due to 
its different representation from the correct character 

ŀ. 
 

4.4. Subscript of TA “ Ś̆Ś̆̆ ŚŚ̆” and DA “˘Ś˘Ś̆Ś˘Ś” 

 
 In Khmer script, the subscript of TA and DA are 

visibly the same. Hence, the Khmer non-Unicode 

fonts represent it as one code. It is very difficult for 



the conversion assembly to identify which one the 

user means to write. The conversion does not handle 

the case and convert it to the subscript of DA. 

 

4.5. Alternative cases 
 

The problem can be demonstrated using the 

following example. 

In Khmer non-Unicode font, the visibility of the 

sequence of    is Ð and then Ю˘ is as it is typed. After 
converting to Unicode, the system will give the 

sequence Ð and Ю˘. The rendering engine will adjust 
the vowel before the consonant to ЮÐ, which is 
visibly different from its previous shape.  
 

5. Conclusion 
  

This paper presents an approach to convert from 

Khmer non-Unicode font strings into Unicode 

format. The approach has achieved a satisfactory 

result. The utility is the main bridge to increase the 

use of Khmer Unicode. It enhances the 

standardization and localization of Khmer scripts in 

the computer. Moreover, the project enhances the 

correct use of Khmer linguistic (the writing system).  

In addition, the flexible design of the system 

ensures the extensibility and reusability. For 

example, recently FK font family, which is used by 

Ministry of Finance, is added to the system without 

major effort and time.  

However, the speed of the conversion is not yet 

as high as expected, but acceptable. It is 

recommended to use the text file conversion if the 

document contains only text with the same font 

family and the same format. 

 

5. Future works 
 

For the project, some work need to be done to 

improve the performance of the system. There is a 

need to: 

o Find solution for some unhandled problems as 

discussed in the discussion part such as the 

subscript of TA and DA. 

o Make the conversion applicable for more fonts. 

o Convert data in the database and other 

applications other than Ms. Office application. 

 

 

 

 

6. References 
 

[1]  C. Nath, Dictionnaire Cambodgien, Edition de 

L’ Institut Bouddhique, Phnom Penh, 1967. 

 

[2] http://ftp.unicode.org/charts/PDF/Unicode-

4.0/U40-1780.pdf 

 

 

 

 

 

 

 

Appendix A 

 

 
 

Figure A.1: Unicode Conversion Architecture 

 


