
Khmer Lexicon Development

Chea Sok Huor, Top Rithy, Chhoeun Tola

csh007@gmail.com, toprithy@gmail.com, tola.ch2004@gmail.com

Abstract

 The definition of a Text Base Management

System is introduced in terms of software

engineering, Goeser and Mergenthaler. This gives a

basis for discussing practical text administration,

including questions on the experience in Khmer

Lexicon Development in term of complex string

objects and incorporated with related information.

Moreover, there are some techniques to improve

performance and manageability of data files will also

be described in Methodology.

1. Introduction

 Since Khmer Unicode developed, many Software

Departments have started to use Khmer Localization

in their services. At the same time, some other

organizations are also working with this

significant project. Concern about the output of

Localization Khmer language in Computer is not only

dependent on technical factor but is also language and

culture sensitive, that is why the development process

needs to involve with both technicians and linguistic

experts.

 Consider some advanced language processing

programs such as Machine Translation, POS Tagger,

Semantic Web and Information Retrieval. They

require a sufficient mechanism which is responsible

for answering language information for a specific

display as well as processing. Considering the

concrete mechanism, Khmer lexicon project is much

needed and was developed since phase 1 of the PLC

(PAN Localization Cambodia) in order to satisfy the

requirement for further project development.

 The Khmer Lexicon is developed to aid a number

of utilities within Khmer language, specific in

vocabulary or rule base used for a particular

professional application. According to these

responsibilities, Khmer Lexicon provides many built-

in methods and is categorized into two parts,

PLC_LexiconUser and PLC_LexiconEditor. Within

the output of Khmer lexicon project developers have

possibility to filter information very deeply depending

on the complexity of criteria that place into

processing section.

2. Methods

2.1. Understanding in CHUO" "ATH

dictionary

 CHUON NATH dictionary is the official

dictionary approved by the government and published

by Institute BOUDDHIQUE, Phnom Penh, 1967. Up

till now we have used the fifth edition of this

dictionary and also had some changing of the

previous information for each generation. The

contents of the dictionary include all categories of

word that are used in official presentation, technical

documentation and idiom as well. Moreover, this

dictionary includes many words that derive from Pali

or Sanskrit, thus it usually useful for translate every

document related with Buda religion or ancient

documents.

 Why CHUO" "ATH dictionary: In order to

develop Lexicon we were required to get a huge

number of data dimensions such as Part of Speech

(POS), Root language, Alternative spelling,

Synonym, Antonym, Hyponym, Phonetic etc... Thus

there it was a time-consuming task for collecting data

to place into each Lexicon dimensions.

 Even though CHUON NATH dictionary is an

official dictionary and reliable for validate document,

it still has some lack of data dimensions with respect

to Lexicon data requirement, because not more than

10% of the content in CHUON NARTH dictionary

includes Antonym, Hyponym, Synonym data. Besides

this missing data, this official dictionary provides a

large number of information for Lexicon requirement;

in addition other dictionary is not more reliable and

detailed than CHUON NARTH dictionary in term of

official reference and size.

 Due to these reasons CHUON NATH dictionary

was selected as the source of information for Lexicon

data. Therefore, the architecture for Khmer Lexicon is

designed to be compatible with the data structure of

this paper based dictionary.

 Even though CHUON NATH dictionary does not

have enough information to complete the Khmer

Lexicon data dimensions, it is still possible to extend

data such as Synonym, Antonym, Hyponymy for the

next version.

2.2. Architecture of the Khmer lexicon

 The architecture of Lexicon API will be divided

into two parts: PLC_LexiconUser and

PLC_LexiconEditor, as can be seen in Figure 1.

These last two parts are designed for manipulation

and updating data. The details of each part will be

described in the following section.

Figure 1: Khmer lexicon architecture

2.2.1. PLC_LexiconUser. PLC_LexiconUser is an

API (Application Program Interface) specifically

designed for manipulation or data searching purposes.

Thus the functional specification of this part is robust

performance.

 For the PLC_LexiconUser function, Searching

Information from Lexicon data (XML file format), it

is necessary to show the structure of Lexicon Data

Files, so we would like you to take a look at the way

we store data in to hard drive and the way we read

those data under any specific criteria.

2.2.1.1. The way we store data. There are a few steps

in order to accomplish storing data. As mentioned

above Lexicon Data is stored in XML (Extensible

Markup Language) files, which is a W3C-

recommended general purpose markup language for

creating special purpose markup languages, capable

of describing many different kinds of data, W3C.

Lexicon is practically management of text and can

simply be separated into management of Head-Word

sets (as complex string objects and incorporated with

related information). As a result, every Head-Word

and its related information will be stored in an XML

file. And those files will be stored differently in a

specific File-Path based on the series of main

consonants in the Head-Word.

 For example: Head-Word = ŁũВ
 ŁũВ = ˝ + Љ̆ + ũ + ˘Б

 +Generating File-Name

 ˝ = U-1780
 ˘Љ = U-17B6

 ũ = U-179A
 ˘Б = U-17B8
 Eliminate 1

st
 byte from each Unicode characters

 File-Name = 80-B6-9A-B8.XML

 +Generating File-Path
 Series of main consonants = ˝, ũ
 File-Path = ..\Lexicon\˝\ũ
 +As a result, Head-Word ŁũВ will be stored in
..\Lexicon\˝\ũ\80-B6-9A-B8.XML.

2.2.1.2 The way we read data. It is simply the reverse

of the previous process (the way we write data).

Firstly we get a Head-Word as a parameter to be

searched. After that, we generate File-Name and File-

Path and then check whether the target file exists or

not. Finally, we use XMLDocument class (in

System.XML name space) as xml parser to parse data

in the target xml file.

 Due to the data structure that was used in the

CHUON NATH dictionary (paper based dictionary),

we came up with a compatible XML Structure, and it

was coded in DTD (Document Type Definition)

format which contains information about the format

of the XML document. A sample of this is as

follows:

<!DOCTYPE WordEntity [
<!ELEMENT WordEntity (HeadWord ,
WordSenses?)>
<!ELEMENT HeadWord (#PCDATA)>
<!ELEMENT WordSenses (SubWordSense+)>
<!ELEMENT SubWordSense (Phonetic? ,
AlternativeSpell? , POS? , RootLanguage?
, Definition, Example?)>
<!ELEMENT Phonetic (#PCDATA)>
<!ELEMENT AlternativeSpell (#PCDATA)>
<!ELEMENT POS (POSName+)>
<!ELEMENT POSName (#PCDATA)>
<!ELEMENT RootLanguage (RootEntry+)>
<!ELEMENT RootEntry (RootName ,
RootDescription?)>
<!ELEMENT RootName (#PCDATA)>
<!ELEMENT RootDescription (#PCDATA)>
<!ELEMENT Definition (#PCDATA)>
<!ELEMENT Example (#PCDATA)>]>

2.2.2. PLC_LexiconEditor. PLC_LexiconEditor is

an API specifically designed for editing and updating

content of Lexicon Data Files (XML Files). As we

have mentioned the above two solid processes: The

way we read and write data to XML Files, we

suppose there is no misunderstanding about the way

we manage Data File and Directory Structure.

PLC_LexiconEditor is an API, which functions as

PLC_LexiconUser

PLC_LexiconEditor

XML

Files

Lexicon API Data Files

data adapter and is responsible for validating data

base on DTD and storing in to the target XML file.

2.3. Maintainability

 With a huge size of Lexicon data, it is necessary

to have a sufficient file structure, so we can manage

and maintain easily. Otherwise, it will result in slow

performance and corrupted data files. Due to the

above issues, Lexicon Data was designed and stored

in separated files for individual Head-Word.

Directory Structure is manageable and easy to fix, in

case files become corrupted. Samples of the file

structure and directory structure are shown in Figures

2 and 3 respectively.

Figure 2: File structure

Figure 3: Directory Structure

2.4. Independent storage

 Khmer Lexicon data file was formatted in XML

format, which is recommended by W3C and the XML

is one among other standard markup languages.

Concerning about robust technology for data storage

and maintenance, why didn’t we choose a Relational

Database System such as SQL Server, MySQL, Ms

Access, etc.? There are some problems that will

bother the user for further use, because this will

require the user to have Database program installed

before running Lexicon. This kind of thing will

increase hardware and software requirement that will

come from the Database program.

 According to our experience with the previous

version of Khmer Lexicon, using Database program

(Microsoft Access) for data storage is much slower

than storing data in separated xml files. Moreover,

there is a risk, if Lexicon Data is stored in a single file

(Microsoft Access file) in case the whole database file

or even a small part is corrupted, it also causes the

program to shut down.

3. Results

 As a result, total number of Khmer Lexicon data

files and folders is:

 +XML files: 33,888 files (equivalent to number

of Head-Words).

 +Folders: 35,128 folders.

 +Actual Size: 33.9MB

 +Size on disk: 133MB

 Searching performance: We have tested on a PC

that has software and hardware capacity:

 +Processor: Intel® Pentium® 4 CPU 2.40GHz

 +Memory: 256 MB

 +OS: Microsoft Windows XP Professional SP2

 The result we are going to mention here is

focused only on timed consumed during searching

process. However, displaying process will take long

or short time depending on what control or tool that is

going to be used for displaying on screen, this process

is excluded. The results are shown in Table 1.

Table 1: Search time

Criteria (Head-Word/Wildcard)
Time

Consumed

ŁũВ 5Miliseconds

˝Я₣Ą̄ΖşĦчЮý 7Miliseconds

ΒЮŌþĄŷĳБ Ћ 4Miliseconds

ŲāФ₣ŲУ₣ЮŵĦ 9Miliseconds

ĮЮėųЭ˝ 6Miliseconds

ĀНŬ‗₤ĦњŎ 7Miliseconds

ũℓЮėųЧ₣ 8Miliseconds

Łũ* 38Miliseconds

˝*ũ 187Miliseconds

˝* 3Sec 15MilSec

Lexicon

˝ Š ...

˝ Š Ð

˝

80-81-B9-80.xml

80-81-D2-9C-80-CB.xml

80-81-D2-9C-B7-80.xml

...

 Due to the experiment result in Table 1, we

notice that searching for a Head-Word (Fix string)

consumed lesser than 10Miliseconds.

4. Conclusion

 Khmer Lexicon lies at the head of further

Language analysis research development. The task of

acquiring a large-scale target language lexicon for

further language processing base application can be

daunting. We have shown that an efficient process for

this acquisition may be developed by first

determining the desired features of the process and

then building efficient tools to facilitate different

steps within the process. These tools have allowed us

to make the acquisition process both manageable and

effective, Leavitt, Lonsdale, Keck and Nyberg.

5. References

[1] CHUON NATH, Dictionnaire Cambodgien,

Edition de L’Institut Bouddhique, Phnom Penh, 1967.

[2] W3C (World Wide Web Consortium),

www.w3c.org.

[3] John R. R. Leavitt, Deryle W. Lonsdale, Kevin

Keck, Eric H. Nyberg. Tooling the Lexicon

Acquisition Process for Large-Scale KBMT,

http://www.lti.cs.cmu.edu/Research/Kant/PDF/take3.

pdf.

[4] S. Goeser, E. Mergenthaler. TBMS: Domain

Specific Text Management and Lexicon

Development,

http://acl.eldoc.ub.rug.nl/mirror/C/C86/C86-1056.pdf

.

