
Nepali Spellchecker 1.1 and the Thesaurus, research and development

Bal Krishna Bal, Basanta Karki, Laxmi Prasad Khatiwada, Prajol Shretha

Madan Puraskar Pustakalaya, Lalitpur, Nepal

bal@mpp.org.np, basanta_karki@mpp.org.np, laxmi@mpp.org.np, prajol@mpp.org.np

Abstract

This paper is a general overview of the technical

and linguistic research and development being carried

out in terms of developing the Nepali Spellchecker 1.1

and the Thesaurus. The strength of the current Spell-

Checker is discussed in the document. A comparative

analysis of the previous version of the spellchecker

and the current version is also done. Besides, the

testing procedures and mechanisms employed for the

performance test of the spellchecker also has been

covered. Lastly, the limitations of the current

spellchecker are put forward and further

recommendations presented. Many changes have not

come into effect in terms of the Thesaurus save the size

of the entries. A brief overview of the Thesaurus

development framework is provided.

1. Introduction

Nepali SpellCheckers do not carry a long history.

The first spellcheckers appeared in the language pack

of MS Windows and in NepaLinux 1.0, both of which

got released for public usage in 2005. The

SpellChecker that came along with the

OpenOffice.Org in NepaLinux 1.0 was very basic. The

word coverage of the system was merely a count of

approximately 300,000 words. Still, the development

of the system was in itself a big revolution in the field

of Natural Language Processing (NLP) for Nepali.

Keeping in mind that the applications like the

spellchecker has abundant usage in the publication

houses, it was felt that the existing spellchecker had to

be enhanced and made more robust. Hence, Nepali

Spellchecker 1.1 is an enhanced form of the previous

spellchecker. In the sections that follow, we will be

discussing on the details involved in the research and

development of the new version of the spellchecker.

2. Research Methodology and Objectives

The data and the information required for the

research work have been acquired by consulting a

wide number of resources. This includes different

publications on the Nepali Grammar, other available

sources like the Nepali dictionaries, active brain-

storming sessions and consultation with experts. The

research was basically for affix rules applicable to

certain headwords categorized by POS category and

handling exceptional cases. The primary objectives of

the research work was to look for maximum number of

affix rules applicable to the headwords listed in the

dictionary file, thus generating as many correct Nepali

words as possible. The Nepali language, being a highly

inflectional and an agglutinative language, it is but

impracticable from technical and linguistic aspects to

list down all the possible words in one file. Rather the

word generation approach by undergoing a

morphological analysis and applying affix rules to

stem words is the most practicable from practical

point of view.

3. OO.Org and HunSpell framework

Hunspell is a spell checker and morphological library.

It is very much applicable for languages exhibiting

rich morphology and using complex scripts . Some of

the interfaces that Hunspell can get connected to are

Ispell-like terminal interface, Ispell pipe interface,

OpenOffice.org UNO module etc.

Hunspell's code base is derived from the OOo

MySpell. Some of the main features of Hunspell are

as listed below [3] :

1. It has Unicode support for the first 65535

Unicode characters ;

2. Morphological analysis is possible both in

custom item and arrangement style ;

3. There are in the maximum 65,535 affix

classes and follows a twofold affix stripping ,

especially for agglutinative languages, like

Azeri, Basque, Estonian, Finnish, Hungarian,

Nepali, Turkish, etc. ;

4. It has support for complex compounding (for

example, Hungarian and German)

5. It has support of language specific algorithms

required, for example, handling Azeri and

Turkish dotted i, or German sharp s);

6. It handles conditional affixes, circumfixes,

pseudoroots, homonyms etc. ;

7. The License that HunSpell follows is the

GPL/LGPL/MPL tri-license

Depending upon the language specific terriotory,

Hunspell may be customized by using the concerned

locale file. HunSpell requires two files, respectively

the dictionary file that contains words for the language

and the affix file that has rules associated to the words

in the dictionary by using flags serving as pointers[5].

The two files should be located in the folder

~openofficefolder/share/dic/ooo/. Spell checking is

done using the affix file, locale and the dictionary file.

While the affix file consists of affix rules, the

dictionary file consists of root word, for example,

“sing”. All the other forms of “sing” like “sings”,

“sang” , “sung” etc. would be generated from the root

word by applying the affix rules.

The dictionary file should clearly mention the name of

the specific locale being used. This helps to avoid the

loading of all the locales available. This dictionary

file is possible to edit using a simple text editor[3].

The dictionary.lst has the following format :

#dictionary.lst for OOo

DICT ne NP ne_NP

THES ne NP th_ne_NP

HYPH en US hyph_en_US

#end of the dictionary.lst

The '#' indicates the commented lines in the file.

We may see the following fields for each entry in the

list [4]:

Field 1: Entry Type

Under this field, there are three different options which

are elaborated below:

 "DICT" - spellchecking dictionary

 "HYPH" - hyphenation dictionary

 "THES" - thesaurus files

You may include one or more of these options

depending upon the purpose of the usage of the

dictionary file.

 Field 2: Language code from Locale

 Here, you would need to specify the appropriate

language, either “en” - for English, “de” - for Dutch,

“ne” - for Nepali.

 Field 3: Country Code from Locale

 Here you would need to specify your country code

name, for instance, “US” for United States, “GB” for

Great Britain, “NP” for Nepal and so on.

Field 4: Root name of file(s) for field 1

Under this field, a combination of the language code

and the country code joined by the underscore symbol

is sufficient in the case of dictionaries, for instance

ne_NP for Nepali language and Nepal. However, for

the thesaurus and the hyphenation, you would also

need to additionally add the “hyph” or “th” before the

language and country code, for instance,

“hyph_ne_NP” and “th_ne_NP”.

4. Results

In the results section, the findings of the study and

the current status of the spellchecker would be

summarized. This includes the analysis of the

performance of the new version of the application.

4.1. Word Formation and Coverage

The dictionary file in the given spellchecker

consists of approximately 39,869 headwords. These

headwords generate more words getting associated

with one or more affixes. The given spellchecker is

expected to generate as much as 9,30,000 words,

which means it can spell-check and provide the same

amount of suggestions. Below, we provide an

overview of the approach and statistics of the

dictionary and the affix rules development.

4.2. Dictionary and affix rules development

In order to populate the dictionary file, the Nepali

words have been categorized under the general parts of

speech category, viz., verbs, noun, pronoun, adjective,

adverb, conjunction, interjection, particle etc. As far as

practicable, the dictionary has been attempted to

populate with stem words or root words. Compound

words are placed in the dictionary file only in case the

rules are difficult to apply for generating particular

compound words. Such words constitute some 2,500.

Given below is a statistical report of the composition

of the dictionary and the possible word generation

applying affix rules.

4.3. Verbs

We have tried to exhaustively include the stem

forms of the Nepali verbs. In doing so, we, however,

also have included some compound verb forms. Pure

stem forms of the Nepali verbs constitute some 5,000

words. With the application of affix rules to these stem

verb forms, it is expected to generate as much as 6,

78,400 possible verbal forms.

For instance, we have placed अचे�, a stem form of

the verb in the dictionary file to which we apply the

suffix आइ, which is listed in the affix file. The

resulting word is verbal form is अँचेटाइ. Furthermore,

the creation and application of the rules have been

done in such a manner that whenever possible and

required, the breeding patterns resulting into the

formation of some other additional words is highly

considered. This, for example, applies to नगर,् a

negation of गर.् This negation can then be propagated

to other possible word generation like नगरेको, नग�न ्

etc. Similarly, गर ् breeds into गरेको, ग�न ् etc. Our

study has revealed that the maximum possible words in

the Nepali language relate to verbs.

4.4. Nouns

The spellchecker has some 17,000 noun

headwords. Our attempt was not to include proper

nouns and concentrate more on common nouns.

However, some concession has been made in including

names of zones, districts, village development

committees, some common proper names etc. This has

been done with a view to give some localization color

to the application. Nepali nouns in combination with

postpositions form several compound words. Hence

the spellchecker has tried to capture such words by

including the possible postpositions that combine with

nouns in the affix list.

Examples serve the following:

�कताबह�को, �कताबह�मा.

In the above, while �कताब is a noun, -ह� indicate

the plural form, -को and -मा are postpositions.

4.5. Pronouns

The pronouns constitute some 400 words in the

given spellchecker. These are not only the pure

pronoun headwords but are also compound pronouns.

Usually these are the words forming as a result of the

combination of the pronouns with the postpositions.

4.6. Adjectives

There are around 11,000 adjectives in the

spellchecker. However, the pure adjective headwords

are just 709 in number. The two very common rules

applied are the following:

-आ suffix for plural

-ई suffix for the female gender

For eg.,

राॆा कपडाह�

राॆी केट�

4.7. Adverbs

The pure adverbs constitute some 2040 words in

the dictionary file.

4.8. Conjunctions

A total of 40 conjunctions are listed in the

dictionary file.

4.9. Interjections

The pure interjections are 150 in number.

4.10. Nuance particles

A total of 30 nuance particles are listed in the

dictionary file.

4.11. Postpositions

There are around 80 postpositions and their derived

forms in the doctionary file.

4.12. Comparison of the Nepali Spellchecker

1.0 and the Nepali Spellchecker 1.1

Since both of the Spellcheckers have been

developed under the HunSpell framework, the

development methodology is the same. However, in

the new version, we have tried to be more scientific

and systematic in terms of the affix rules development

and even in terms of housekeeping the entries in the

dictionary and the affix rule files. In the past, we had

focused more on postpositional word forms and affix

rules applicable in the formation of individual

compound words. With the new version, we have tried

to group not just individual words but words of

different parts of speech category but to which the

same set of affix rules are applicable. In terms of spell

checking, the previous version could check about

300,000 Nepali words, while the current one checks

around 930,000 Nepali words.

4.13. Complexities

The basic complexity was related to rule making

and generalization of the rules for as much parts of

speech category words as possible. The main challenge

was in finding a midway to accomodate all the

exceptions for a certain rule set. It was noted that often

during the development and parallely testing process,

OpenOffice.Org 2.0 got slowed down. This problem

was soon fixed by removing useless free spaces in the

dictionary file.

4.14. Performance testing

Assuming that all Unicoded Nepali text that we

collected from different sources were spelt correctly,

our main basis for performance testing of the

spellchecker was trying to get as less wavy red lines as

possible. On every test session, the words marked with

wavy red line were collected and tried to fix it in the

consecutive tests. For the purpose of maintaining a

checklist, a simple web interface was devised in PHP.

Through the interface missing words and suggestions

could be suggested. A screenshot of the web interface

is shown below in figure 1.

Figure 1. Web interface used for forming checklist

4.15. Limitations of the Nepali Spellchecker 1.1

Some of the limitations of the Nepali Spellchecker 1.1

are listed below:

1. Eyelash र instances as in प� यो, ग� यो etc.

This was chiefly because the input of such words

was done by the input method which did not address

the Zero-Width Joiner (ZWJ) and Zero-Width- Non-

Joiner (ZWNJ) issue. In the future versions, since

we would be using the rectified input method, such

issues would be automatically addressed.

2. Noun and its adjective derivatives and vice versa

E.g. दया (noun) and its adjective derivative

दयालु

3. Other Verb Derivatives Eg. िचिसन ुfrom adjective

िचसो

4. Prefixes Eg. उप + हार = उपहार

The current spellchecker does not include words

formed as a result of the prefixation. This issue would

be addressed in future versions.

5. Compound Words Eg. मह%वपूण) Compound word

handling is yet to be addressed. Principally two

nouns could be joined to form compound

words but often the resulting words turn out to

be insensible.

6. Emphatic words e.g. पढेको प+यै

4.16. Thesaurus enhancements

The modality of thesaurus development has been

the same as in the earlier version except that the size of

the thesaurus in terms of words has increased from 600

to 5,500. As in the previous version, we have followed

the MyThes framework developed by Kevin

Hendricks.

This thesaurus has the facility to provide a words

meaning and synonym but not it's antonym, which a

thesaurus should give if thesaurus as such is taken in

the strictest sense. MyThes was made specially to

provide OOo with a thesaurus. It is the first thesaurus

for OOo and is still being used with some

enhancements from the OOo community. Originally, it

did not support UTF-8 encoding, which was a big

setback for countries lacking their own 8-bit ASCII

character set. Recently, László Németh, the creator of

Hunspell, provided a patch for MyThes to support

Unicode. This patch could be patched to MyThes if

versions of OOo older than 2.0.2 are present. In

versions OOo 2.0.2 and above, the patch will have

been automatically integrated into OOo. The creation

of this patch has been a milestone in context of

Internationalization (I18n) of MyThes, because non-

latin languages now can be integrated into the

thesaurus of OOo.

4.17. Thesaurus implementation in Ooo

MyThes is a very simple thesaurus. This thesaurus

does not only provide information on synonyms, but

also meanings and part-of-speech of a word. The main

features of MyThes are as listed below:

• It is written in C++ to make it easier to

interface with Pspell, OpenOffice, AbiWord,

etc.

• It is stateless, as no static variables are used

and should be completely reentrant with no if

defs.

• It compiles with -ansi, -pedantic, and -Wall

with no warnings, which makes it quite

portable.

• It uses a simple perl program to read the

structured text file and generate the index file

which contains the index needed for binary

searching.

• It is very simple with “lots” of comments.

The main "smarts" are in the structure of the

text file that makes up the thesaurus data.

• It comes with a ready-to-go structured

thesaurus data file for en_US extracted from

the WordNet-2.0 data.

• The source code has a BSD license (and no

advertising clause).

5. Conclusion

The Nepali Spellchecker and Thesaurus have

undergone significant change if not made a giant leap

while coming from the previous version to the current

one. The wide word coverage justified by the

performance testing of the current version reveals this

fact. However, there is still lot of things to be

improved in the current spellchecker to make it of the

industrial strength. We hope to rectify the limitations

in our future releases

6. References

[1] “OO Lingucomponent project:”

http://lingucomponent.openoffice.org/

[2] http://en.wikipedia.org/wiki/MySpell

[3] http://hunspell.sourceforge.net/

[4] http://elle.epfl.ch/article.php3?id_article=63

[5] http://hpux.tn.tudelft.nl/hppd/hpux/Text/ispell-

3.2.06/man.html

[6] Nepali Team - Madan Purskar Pustakalya; "PAN

Localization Guide to Open Source Localization”

2006, Printworks Pakistan

