
A Morphological Analyzer and a stemmer for Nepali

Bal Krishna Bal, Prajol Shrestha

bal@mpp.org.np, prajol@mpp.org.np
Madan Puraskar Pustakalaya, Nepal

Abstract

This paper discusses the design and

implementation issues as well as the linguistic aspects

of the Morphological Analyzer and a stemmer for

Nepali.

1. Background

Natural language Processing(NLP) is a new activity

for research and development in Nepal. Precisely

speaking, in a large scale, it started just in the year

2005 with the release of the first Spell Checker for

Nepali and the "Dobhase" English to Nepali machine

translation project, respectively developed by Madan

Puraskar Pustakalaya (MPP, http://www.mpp.org.np)

and with the Kathmandu University(http://ku.edu.np)

in collaboration. In the same year, further works on

language engineering like corpus building and

annotation for Nepali, Text-To-Speech System for

Nepali, digitized Nepali dictionary also got started

under the NeLRaLEC (Nepali Language Resources

and Localization for Education and Communication)

Project , also known as the Bhasha Sanchar Project

(http://www.bhashasanchar.org) and currently being

run at Madan Puraskar Pustakalaya, Nepal . No doubt ,

these works proved to be substantial in trigerring the

awareness and interest for further research and

development of Natural Language Processing, NLP

tools, however , a full-fledged focus on the NLP

development had not been able to get realized due to

the domain-specific requirements of the above

mentioned activities. It was on the light of the Nepali

Grammar Checker development, an activity under the

PAN Localization Project(http://www.PANl10n.net)

that the necessity of an adequate research and

development of NLP was felt. This led to the study of

the structure of Nepali Grammar and Language as well

as the components required for a Grammar Checker.

The findings of the study revealed that research and

development of the NLP tools and resources in Nepal,

for instance, a machine-readable and a multi-purpose

Nepali lexicon, morphological analyzer, Parts-Of-

Speech, POS tagger, chunker, parser etc., are primarily

in the infant stage and that the development of a

Nepali Grammar Checker would necessarily require

the research and development of the intermediate NLP

components, some or all of these right from scratch.

With the above mentioned NLP tools developed,

further doors of possibilities would open up for the

research and development of several useful Natural

Language Processing Applications like Machine

Translation systems (currently we just have a uni-

directional one. from English to Nepali), Question

Answering systems, Grammar Checker for Nepali,

Information Retrieval Systems, Expert Systems and so

on and so forth. Given the socio-economic realities

and constraints of Nepal and the Nepalese, such a

substantial growth in the focus towards the research

and development of NLP applications is certain to

bring about some positive impacts, some of which

include a concrete contribution towards bridging the

existing digital-divide and the development of the

expertise in local language computing.

2. Introduction

A Morphological Analyser, MA, is a program or

algorithm which determines the morpheme(s)
1
 of a

given inflected or derived word form including the

analysis of the bound morphemes in it's grammatical

form. For the MA to function, a stemmer should be

priorly present in the system. Hence, wherever

required, we would also be talking about the stemmer

throughout the document. Stemmers are used to find

the root of the inflected or derived word form. MA

uses the information of the stemmer and keeps track of

the bound morpheme(s) present in the original

inflected or derived word and in addition to this

1 Morpheme is the smallest linguistic piece of a word with

a grammatical function[10] . We could divide

morphemes into two parts, one being the base morpheme

which can standalone and the other which attaches to the

base morpheme called bound morpheme like affixes,

infixes, circumfixes.

 325

provides grammatical information. MA are generally

used for information retrieval and other Natural

Language Processing Applications like the Parts-Of-

Speech(POS) Tagging, Machine Translation etc. MA

have been designed and implemented for several

languages of the world. Complexities in design and

development, however, prevail for inflectionally and

derivationally rich languages like Nepali.

The stemmer and consequently the MA being

developed for Nepali currently does not handle

compound words formed as a result of the

concatenation of individual words.

3. Available stemming algorithms

Several stemming algorithms are available for the

English language. Given below is a list of some of the

popular stemming algorithms:

1) Krovetz Stemming Algorithm(1993);

2) Paice/Husk Stemming Algorithm(1990);

3) Porter Stemming Algorithm(1980);

4) Dawson Stemming Algorithm(1974);

5) Lovins Stemming Algorithm(1968);

All of the above mentioned stemmers are suffix

removal stemmers and hence do not deal with the

prefixes in a given word. Iteration and context

awareness is very crucial in the stemmer development.

These basically relate to looking for more than one

prefixes and suffixes in a word and consequently

producing a valid free morpheme out of the input

word. Stemmers are further classified into two major

types, respectively the context-sensitive and the

context-free types. The context-sensitive prevents the

production of insensible and invalid roots whereas the

context-free may end up into some invalid and

insensible roots or free morphemes.

The above algorithms are for the English language

and cannot be applied to the Nepali Language. For

each language there will be different stemming

algorithm, hence a unique morphological analyser.

Currently, there is not any algorithm available to stem

a Nepali word. The stemmer and the morphological

analyzer that we are currently developing is a data

driven one with a core engine, set of rules for

stemming, a free morpheme list and an affix list.

4. Prerequisites of the Stemmer

The prerequisites of the Stemmer Module would be the

following:

i) POS Tagset;

ii) Tokenizer;

iii) Free morpheme based lexicon;

iv) Two set of affixes each for the suffix and

prefix;

v) A Database of word breaking Grammatical

rules.

5. POS Tagset

The NLP team at Madan Puraskar Pustakalaya,

Nepal has developed a relatively simplified POS

Tagset of 91 tags. The tagset has been developed

targeting the Grammar Checker for Nepali. The tagset

development guidelines and experiences of Hindi,

Urdu and some others like the British National Corpus

have been consulted in developing the current POS

Tagset. The POS tag coverage test of the developed

POS TagSet is currently being tested. For the testing

purpose, the entries in the free morpheme list and the

affixes list are being POS tagged.

6. Tokenizer

The tokenizer takes an input text from a file and

creates tokens
2
. The tokens are stored in a XML

format for better representation of each element. The

tokenizer separates sentences, words, numbers and

punctuations in the given text. The MA takes each

token and processes it and annotates each element in

the XML format with it's morphemes and grammatical

categories. The different tags used for the XML

representation of the tokens are as given below:

<text> for text

<s> for sentence

<w> for word

<n> for number

<sp> for space

<p> for punctuation

<nl> for new line

2 Token here is indicating to the useful information

that we could use later for further processing. We

have considered that we would take sentences,

words, numbers, punctuations, spaces, newlines as

tokens.

 326

Free morpheme based lexicon

The morpheme based lexicon would have the free

or unbound morphemes of the Nepali language. Apart

from placing the free morphemes (root form of words)

in the lexicon, they would be assigned their respective

syntactic categories or parts of speech with the pipe

sign used as a delimiting symbol.

Given below is a possible list of entries for the free

morpheme based lexicon.

���|NN

��|VV

����|ADQ

�|PFS

Abbreviations:

NN – Common Noun

VV – Verb Base Form

ADQ – Adjective Qualitative

PFS– Pronoun First Person

6.1. Set of affixes

There will be two sets of affixes, one for the prefix

and the other for the suffix. Each set will contain an

exhaustive list of the forms of affixes in the Nepali

language. The form of affixes here mean the form in

which the affixes are present in the inflected or

derived form of the words. For example, if a word '	
� �'

: 'sut' is a root and it is combined with the suffix '
��' :

'eko' the resulting form becomes '	
����' : 'suteko' . The

suffix '
��' : 'eko' changes it's form to become '����' :

'eko'. Here '
' is a vowel and '��' is a vowel symbol of

'
'. So the set of suffixes will contain '����'. These
affixes represent the category of bound morphemes

and indicate certain syntactic category when combined

with suitable free morphemes or roots. This is most

common with verbs. However, not all bound

morphemes essentially may be assigned the syntactic

categories.

Given below is a list of entries in the set of affixes.

Prefix set (file):

��|10

��|11

	
|12

Suffix set (file):

����|1

�
|2

�� |3

�|4

��|5

��|6

���|7

���|8

��|9

The number that is present after the suffix and the

prefix, delimited by the '|' pipe sign is to point to the

rule present in the word breaking grammatical rules

file.

6.2. Grammatical rules for word breaking

Nepali compound words forming as a result of the

combination of the free and bound morphemes are not

always regular in terms of formation and consequently

in breaking. Insertion and deletion of one or more free

vowels and vowel symbols or dependent vowels is a

common phenomenon.

Below, we try to illustrate some of the instances of the

above operations in word formation.

	
+���=ः����

In the above, 	
 and the character � combine to

form ः�� and in doing so the vowel sign �
 is deleted,

the consonant 	 is reduced to 	 � or half character and

the vowel � is substituted by the cluster ��.

Some more examples:

Irregular word breaking:

���� = ��+��

 327

 ��� = � �+��

����= ���+��

Regular word breaking:

���!"� = ���+�"�

���#� = ��+�#+�

$����� = $�+���+�

These word formation patterns should be noted as

rules, which need to be taken into consideration while

breaking the words into the respective morphemes.

6.3. Database of the word breaking rules

The insertion and deletion rules mentioned above

and which are associated with the prefixes and the

suffixes may be formulated as follows:

String

sequen

ce in

the

input

word

Position

of the

string

sequence

in the

input

word

Associate

d affix

Type of

affix

Action

required

1) �� At the

end of

the word,

the very

last letter.

-� regular 1) Strip off

�� from the

input word.

Record � as
the suffix

associated.

For example,

(�#�=�#+

�,���!=���

+�)

2)

��"/��

"�

At the

end of

the word

from the

end.

-�"/-�"� regular 2) Strip off

��"/��"�
from the

input word.

Record

�"/�"� as
the suffix

associated.

For example,

String

sequen

ce in

the

input

word

Position

of the

string

sequence

in the

input

word

Associate

d affix

Type of

affix

Action

required

�����%�"=�

����% +�"

���!"�=���

+�"�

3) ��� At the

end of

the word

from the

end.

-�� irregular 1) Strip off

��� from the

input word.

Add �� to the
end of the

resulting

word if the

last letter of

the word

formed is a

consonant.

Record ��
as the suffix

associated.

For example,

���� =���+�

�
2) Exception

holds the

letter �. If
the the last

character of

the resulting

word is �,
strip it off

and add �� .

Record ��
as the suffix

associated.

For example,

���� =�� +

��
3) If the

 328

String

sequen

ce in

the

input

word

Position

of the

string

sequence

in the

input

word

Associate

d affix

Type of

affix

Action

required

String

sequen

ce in

the

input

word

Position

of the

string

sequence

in the

input

word

Associate

d affix

Type of

affix

Action

required

insert �� in
front of the

character

which is

followed by

���

&'��� =�'��+

��

4) �� At the

end of

the word.

-
 regular 1) Stripe off

�� from the

end of the

word. Look

for the

resulting

word in the

free

morpheme

list. If found

record �� as
the suffix.

&'���� =&'���

+��

$���	� =$���

	+��
2)

Exceptions

hold the

following:

���� =����+

���� =����+

The rules are placed in two separate files one for

the prefix and the other for the suffix. This allows

better handling of affixes. As we already know that the

removal of affixes for irregular pattern is difficult, we

 329

have tried to firstly implement simple rules for regular

patterns. To be able to formulate the rules and apply

them, the irregular affixes will have to be studied in

more detail. For regular affixes, we have formulated

the rule with a header line which includes the rule

number for indexing, the type of affix, the number of

sub rules, the morpheme as affix, and the respective

grammatical category it represents. All of these fields

are space delimited. After the header line, sub rules are

present. A snippet of the rule file is given below:

suffix rule file:

1 SFX 1 �� HRU

�� .

2 SFX 1 �� PLE

�� .

Abbreviations:

SFX - Suffix

PLE – Ergative

HRU – Plural Marker

The sub rules are simple. The first field indicates what

is to be deleted and the second field indicates what is

to be appended. The two fields are delimited by space.

7. Morphological Analyser

As we have already mentioned that for the

morphological analyzer a stemmer should be priorly

present. The MA that we are currently developing uses

the core engine of the stemmer and adds few

functionality to it so that it not only strips off the

morphemes but also keeps track of which bound

morphemes are present and which grammatical

category they belong to. The grammatical category are

present in the rule files as mentioned above. The work

flow of the core engine of the MA is presented in the

flowchart given below:

 330

 Fig.1. Flowchart of the MA and Stemmer

Is Root with halant

Start

Is Root

Is Suffix present

If Prefix present

NO

NO

NO

NO

Yes

Yes

Yes

Yes

If Prefix &
suffix

present

NO

Yes

Yes

Yes

Store prefix
& remove
prefix from

word

Store suffix
& remove
suffix

Is Suffix,
Prefix present

Yes

NO

Is another
suffix

present

Is Root

Delete added suffix
prefix from it's list

Add suffix
to tmp

tmp =
word

Is another
prefix

present

tmp = prefix+ word

NO

Yes

NO

Input token Root Word

Root Word
with stored

prefix and suffix

Not Recognized
with probable
prefix and suffix

End

 331

8. Output of the Nepali Morphological

Analyser

The Nepali MA has three outputs.

1) Input word is a root, POS information of the

root word.

2) Root form of the word and the affixes

attached, POS information of the root word

and the affixes.

3) The root of the input word not found by the

system, affixes present, POS information of

the affixes found.

4) The input word is not recognized by the

system.

9. Cases

1) The input is a free morpheme, for eg.,

���(root, NN);
2) The input word consists of free morpheme

and one or more suffixes, for eg.,

���!"�=���(root,NN)+�"�(SUFF);
3) The input word consists of a free morpheme

and one or more prefixes, for eg.,

����()�=��(PREF)+��()�(root, NN);
4) The input word consists of a free morpheme

and one or more prefixes and one or more

suffixes, for eg.,

 $����� =$�(PREF)+���(root,NN)+�(SUFF);
5) The input word is not recognized by the MA

but consists of morphemes, for eg.

����=��(not recognized) + ��(HRU).

The output will be as follows with the respective input:

input:

��&*�+���� �������,�����-
output:

<?xml version="1.0" encoding="UTF-8"

standalone="no"?>

<text>

<s>

<w

morph="��&*�+��(root)+��(HRU)">��&*�+���

�</w>
<sp> </sp>

<w

morph="��(PREF)+���(root)+��,���(SUFF)+��(H

RU)">�������,�����</w>

<p>-</p>
</text>

Abbreviations:

SUFF - suffix

PREF – prefix

HRU - plural amrker

10. Conclusion

The system described is a simplified version of the

stemmer and a morphological analyzer for Nepali.

Currently, the system does not handle words formed as

a result of the combination of two free morphemes.

The database of word breaking rules is also of

negligible size right now. The current algorithm of the

core engine of the system also requires further

optimization. However, the first prototype of the MA

has been developed and ready for preliminary testing.

Several technical and linguistic challenges are but

natural to be posed during the development of the

system owing to the rich morphology of the Nepali

language. We expect to add features like complexity

handling in due course of the research and

development.

11. References

[1] Jurafsky, D. and Martin, J. Speech and Language

Processing, An Introduction to Natural Language

Processing Computational Linguistics and Speech

Recognition, University of Colorado Boulder Fifth

Indian Reprint, 2005

[2] Kinoshita, J. , Nascimento, S. and Menezes, C. , A

Portuguese Grammar Checker Based on

CETENPHOLA Corpus

[3] Mathew, D. A Course in Nepali, RatnaPustak

Bhandar, 1998

[4] Acharya, J. A Descriptive Grammar of Nepali and

an Analyzed Corpus, Georgetown University Press,

1991

 332

[5] Bigyan Nepali Sabdakosh, Royal Nepal Academy,

Nepal, 2002.

[6] Pokharel, M., Nepali Vakya Vyakaran, Ekta Books

Distributors Pvt. Ltd., Thapathali, Kathmandu, 2054

B.S

[7] Adhikari, H. R, Bhandar, B.P and Bhotahiti,

Samasamayik Nepali Vyakaran, Kathmandu, Third

Edition 2062 B.S

[8] Luitel, K.P, Luitel, L., Bhandar, B.P and Bhotahiti,

Kathmandu, Second Edition 2058 B.S

[9] http://comp.lancs.ac.uk/computing/research/stemmi

ng/Links

[10] “Hunspell”

http://sourceforge.net/projects/hunspell

[11] Aronoff, M. and Fudeman, K., What is

Morphology? Blackwell Publishing, Incorporated

(October 1, 2004)

