

Rendering Nepali in Linux

Paras Pradhan, Pawan Chitrakar, Srishtee Gurung, Minal Koirala and Sarin Pradhan
MPP MPP MPP KU KU

{paras, pawan, srishtee}@mpp.org.np, minalkoirala@yahoo.com

Abstract

This research document for both Rendering

Engine for Nepali in Linux and updating

rendering engine for Nepali text are merged

together. This is done because as research work

on rendering engine was on progress, it came to

our knowledge that most of the research work on

both the topics was similar and correlated with

each other.

This document includes architecture of Pango

and implementation of Pango is discussed in

details together with a discussion on different

Types of Fonts. For rendering in Open Office,

ICU is also studied and documented. Last but

not the least Since Free Type 2 and Pango helps

in rendering a character in Devanagri, Free

Type 2 is also conferred in this document.

The actual implementation for rendering

Nepali text is included in detail and a

comparative study is also given between different

versions of Pango for Nepali text. The screen

shots using Pango 1.2.0 and Pango 1.4.1 is

shown in the report

NLCP/PANL10n/Tech/RS/Rend/RPT 03.

1. Pango

Pango is a library for displaying properly

internationalized text such as Devanagari,

Cyrillic and others. It works on top of several

display systems like X fonts, client side open

type fonts etc [4]. In this regard, rendering

internationalized text involves the Pango engine

picking up fonts and finally displaying the fonts.

For this, we would require the Unicode Charset

or slot for the specific language in the Unicode

Charset table. The rendering process also deals

with directions of the text and the right glyph

selection for a particular script.

In Devanagari script, the characters make up a

syllable interacting in complex ways to produce

the final rendered form [4]. This type of

rendering necessarily involves character

combination, cluster formation and reordering.

Pango results in wrapping lines, text layout,

choosing glyphs and rendering thus acting as the

generic model for lying out and displaying

internationalized text .

2. Architecture

Several factors underlying the design of Pango

are [4]:

• The system uses Unicode as a common

character throughout.

• The code for each language is dynamically

loaded separately by Pango thus exhibiting

the modularity approach.

• Pango language module is further divided

into submodules:

a. Language module, which is system

independent in terms of rendering and

which deals with tasks like drawing and

printing using X fonts.

b. Shaper module, which is also system

independent like the language module

and basically dealing with glyph

positioning.

• Pango has an abstract class named “Pango

Font” . This determines the metrices fo an

individual glyph as well as of the font

metrices, indivdual glyph metrices and

also looks into the coverage of Unicode

characters by a particular font.

“PangoXfont” subclass handles Xfonts.

• Pango Layout object is the higher level

abstraction class. This class gets initialized

with [4]:

a. A Unicode text block

b. Attributes for the text (font family, size,

color, Line-width, line spacing, indention

etc). Pango layout deals with interactive

editing also such as Cursor movement

with arrow keys etc).

3. Rendering of Nepali text

Rendering includes [4] :

• Itemization

• Boundary resolution

• Shaping

• Line breaking

• Rendering

3.1. Itemization

The input Unicode string decomposed into

items or tokens and is analyzed by the

language module in a single direction [4]. If

font's size and style is also set, then the item is

again subdivided.

3.2. Boundary resolution

In this step, the word boundaries and line

breaks are determined [4]. The function used is:

pango_break ().

3.3. Shaping

In this step, characters from each item are

converted into glyphs [4]. Function used is:

pango_shape ()

3.4. Line breaking

This step makes use of the results of shaping

and boundary resolution to choose where to

break lines that would require wrapping [4].

Shaping is also called after line breaking if

breaking lines involves dividing items.

3.5. Rendering

Rendering is essentially the result of the two

processes, viz., shaping and line breaking. The

result is a set of glyphs strings (glyphs from the

font). For rendering X fonts, libpangox is used

whereas for True Type and Postscript fonts

libpangoft2 is employed taking the help of the

free type library [4].

4. Implementation

Programming Language C has been used to

develop Pango . Gobject has been used for

Pango development which is found in the older

versions of GTK+ toolkit. Pango and glib can be

downloaded from http://gtk.org [4].

4.1. Installing GLIB

To install glib, you would need to serially run the

following commands:

• ./configure --prefix=/usr

• make

• make install

4.2. Installing Pango

To install Pango, you would need to serially run

the following commands:

• ./configure --prefix=/usr --

sysconfdir=/etc

• make

• make install

5. ICU by IBM

ICU (international components for Unicode) is

the set of C/C++ and java libraries for Unicode

support. Before, ICU was the internalization API

of JDK 1.1 and later on it turned as the most

advanced Unicode/i18n support. The latest

version of the Unicode standard is supported by

ICU . The same results in terms of rendering are

achieved across all platforms using ICU[3].

5.1. Features of ICU

• Unicode text handling.

• Locale and Resources

The ICU package consists of the locale and

resource bundles along with the classes

implementing them. In addition to this, it

contains the locale data and makes the APIs

available to access and make use of that data in

various services [3].

A locale is the identification of a group of

users having similar cultural and linguistic

sharings and their general expectations in how

their computers interact with them while

processing data. This abstract concept is

expressed by one of the following points listed

below [3]:

:

• Language specification

• Region or country specification.

The language and region specification is

specified by a locale ID. In turn the software gets

enabled to provide support for culturally and

linguistically suitable information. The C++

locale class are provided by ICU with locale IDs

[3].

Locale-specific data is stored by ICU in

resource bundles. Hence, a general mechnaism is

provided to access strings and other objects for

ICU services. The ResourceBundle contains the

locale data in C++. In case of C, this fetaure is

provided by the user_interface. ICU provides the

generic resource bundle APIs to access these

bundles and at the same time facilitates tools to

build them [3].

6. FreeType 2

FreeType 2 is a software font engine and

designed for high quality glyph image. It is

efficient, customizable and portable enough and

works well for the text image tools, font

conversion tools, display servers etc.It is written

in industry standard ANSI C and compiles well

with any C compiler [3].

APIs are not provided by FreeType 2 to

perform higher level features like text layout or

graphic processing. However, it has a simple,

easy to use and uniform means to access the

contents of the font files[3,11].

6.1. Features of FreeType 2

 FreeType 2 provides a simple and easy-to-

use API to access font content uniformly,

irrespective of the file format. It has the support

for scalable font formats like TrueType fonts or

TrueType 1. The design is made in such a way

that even new glyph image formats are supported

and that there is also the facility for glyph

manipulation [3]. By default, the following font

formats are supported by FreeType 2 [6]:

• TrueType fonts

• Type 1 fonts

• CID-keyed Type 1 fonts

• CFF fonts

• Open Type fonts (both TrueType and

CFF variants)

• SFNT-based bitmap fonts

• X11 PCF fonts

• Windows FNT fonts

• BDF fonts (including anti-aliased ones)

• PFR fonts

• Type42 fonts (limited support)

Free Type 2 can read directly from ROM.

Thus, the client applications can provide their

own memory manager and i/0 stream

implementation. The FreeType 2 code also may

be compressed just by compiling the modules of

the required portions [3].

7. FreeType 1(Ft1) Vs FreeType

2(Ft2)

• Ft1 only supports true type format while

Ft2 supports many more formats.

• Ft2 API is more powerful compared to

Ft1.

• Ft1 supports Open type text layout

processing.

8. Fonts

Fonts are typefaces for screen display and

printer output. They represent a graphical design

applicable to all alphanumeric symbols in the

alphabet. These fonts may come in different

sizes and styles. Different types of fonts are

[7,8]:

8.1. Bitmap fonts

Bitmap fonts are matrices of dots. Two types of

bitmap fonts are [7]:

• Bitmap printer fonts (e.g.: pk)

• Bitmap screen fonts for use in X windows

and console (e.g.: bdf, pcf).

8.2. Type 1 fonts

Devised by adobe and supported by adobe's

postscript standard. It is distributed as: afm

(adobe font metric) or pfm (postscript fonts for

windows) and outline file as pfb (printer font

binary) or pfa (printer font ASCII).Outline file

contains all the glyphs and metric file contains

the metrics [7].

8.3. Type 3 fonts

 Distributed same as type 1 but not supported

by X. Only supported by Postscript standard.

8.4. True Type fonts

Developed by Apple and stores the metric and

shape in a single file (.ttf file) [7].

8.5. Type 42 fonts

Same as TrueType fonts in addition to the

headers with support for rendering by a

postscript interpreter [7].

8.6. Open Type Fonts

Open Type Font, a new cross-platform font is

a joint collaborative effort by Adobe and

Microsoft . The two main benefits of the Open

Type format are as follows [10, 11]:

• It provides cross-platform compatibility

i.e. the same font file works on more than

one operating system environment.

• It supporta widely expanded character sets

and layout features .

9. Use of Pango Engine under

Debian

Pango is built for handling rendering of

internationalized text under GNU LINUX and

since it is modular lots of shaper modules are

already available with Pango as: pango-thai,

pango-indic etc.

So we have tested Pango for rendering of

Devanagari script support. Before, we used

Pango 1.2.0 and after the release of Pango 1.4.1

stable version we have created the Debian

packages of pango-1.4.1 and its dependent

package Glib as libpango_1.4.1-1_i386.deb and

libglib_2.4.5-1_i386.deb. Then we installed:

Glib and Pango respectively by using the

commands:

• ./configure --prefix=/usr

• make

• make install

• ./configure --prefix=/usr --

sysconfdir=/etc

• make

• make install

Glib and Pango were installed in Debian linux

in which are working on and also checked with

few other flavors of Linux and found the

rendering is better as compared to Pango 1.2.1.

9.1. Comparative Study

Previously when we worked with Pango 1.2.0

with Red hat Linux there were glyph positioning

problems. However, when we used Pango 1.4.1

installed in Debian, there were no such problems.

We even checked with different open type fonts,

and we found out that the glyph positioning has

improved a lot with Pango 1.4.1. Fig-1.1 and

Fig-1.2 show difference between the rendering

with Pango 1.2.0 in Red hat Linux and Pango

1.4.1 installed in Debian (the glyph positioning

problem is visible in Fig-1.1) Fig-2 and Fig-3 are

the screen shots of GNOME Desktop and the

date using Pango 1.4.1. These screen shots can

be referenced in the report

NLCP/PANL10n/Tech/RS/Rend/RPT 03.

10. Conclusion

As Pango supports Devnagari Script rendering,

there is no need to modify the existing Pango

rendering engine. Now, after the stable release of

Pango 1.6 we will be checking the major changes

and test it.

11. References

[1] O. Taylor. Internationalized Text Handling,

In the Proceedings of “Ottawa Linux

Symposium” 2001

[2] “GTK+ The GIMP Toolkit” http://gtk.org

[3] http://icu.sourceforge.net/docs/papers/icu_o

verview_latest.doc

[4] http://old.lwn.net/2001/features/OLS/pdf/pdf

/pango.pdf

[5] http://freetype.org

[6] http://docs.gimp.org/en/ch06.html

[7] http://www.corel.linux.com/howtos/Font-

HOWTO/fontech.shtml

[8] http://www.cdnamesearch.com/html/upload/

CDNS%20Guide(11).pdf

[9] http://www.kellogg.cc.mi.us/infotech/grde/c

ourses/grde105/week6.html

[10] ttp://www.mcnaughton-

gunn.com/prepress/fonts.html

[11] http://people.freedesktop.org

[12] http://tdil.mit.gov.in

NOTE: This work has been supported through PAN Localization Project (www.PANL10n.net) grant

from the International Development Research Center, Ottawa, Canada, administered through Center for

Research in Urdu Language Processing, National University of Computer and Emerging Sciences,

Pakistan.

