
Festival-si: A Sinhala Text-to-Speech System

Ruvan Weerasinghe, Asanka Wasala, Viraj Welgama and Kumudu Gamage
Language Technology Research Laboratory, University of Colombo School of Computing,

Colombo, Sri Lanka

arw@ucsc.cmb.ac.lk, awasala@webmail.cmb.ac.lk, vwelgama@webmail.cmb.ac.lk,

kgamage@webmail.cmb.ac.lk

Abstract

This paper brings together the development of the

first Text-to-Speech (TTS) system for Sinhala using the

Festival framework and practical applications of it.

Construction of a diphone database and

implementation of the natural language processing

modules are described. The paper also presents the

development methodology of direct Sinhala Unicode

text input by rewriting Letter-to-Sound rules in

Festival's context sensitive rule format and the

implementation of Sinhala syllabification algorithm. A

Modified Rhyme Test (MRT) was conducted to

evaluate the intelligibility of the synthesized speech

and yielded a score of 71.5% for the TTS system

described.

1. Introduction

A Text-To-Speech synthesizer is a computer-
based system capable of converting computer readable
text into speech. The conversion of text to speech
involves many important processes. These processes
can be divided mainly in to three stages; text analysis,
linguistic analysis and wave-form generation [1]. The
text analysis stage is responsible for converting the
non-textual content into text. This stage also involves
tokenization and normalization of the text;
identification of words or chunks of text. Text
normalization establishes the correct interpretation of
the input text by expanding the abbreviations and
acronyms. This is done by replacing the non-
alphabetic characters, numbers, and punctuation with
appropriate text-strings depending on the context. The
linguistic analysis stage involves finding the correct
pronunciation of words, and assigning prosodic
features (e.g. phrasing, intonation, stress) to the
phonemic string to be spoken. The final stage of a TTS
system is waveform generation which involves the
production of an acoustic digital signal using a
particular synthesis approach such as formant
synthesis, articulatory synthesis or waveform

concatenation [6]. The text analysis and linguistic
analysis stages together are known as the Natural
Language Processing (NLP) component, while the
waveform generation stage is known as the Digital
Signal Processing (DSP) component of a TTS System.
In this paper, we describe the implementation and
evaluation of a Sinhala text-to-speech system based on
the diphone concatenation approach. The Festival
framework [1] was chosen for implementing the
Sinhala TTS system. The Festival Speech Synthesis
System is an open-source, stable and portable
multilingual speech synthesis framework developed at
the Center for Speech Technology Research (CSTR),
of the University of Edinburgh.

TTS systems have been developed using the
Festival framework for different languages including
English, Japanese [1], Welsh [12], [2], Turkish [9],
and Hindi [5], [8], Telugu [3], [5], among others.
However, no serious Sinhala speech synthesizer has
been developed this far. This is the first known
documented work on a Sinhala text-to-speech
synthesizer. The system is named “Festival-si” in
accordance with common practice.

The rest of this paper is organized as follows:
Section 2 gives an overview of the Sinhala phonemic
inventory and writing system; Section 3 explains the
diphone database construction process; the
implementation of natural language processing
modules is explained in section 4. Section 5 discusses
the potential applications while Section 6 presents an
evaluation of the current system. The work is
summarized and future research directions and
improvements are discussed in the last section.

2. Sinhala phonemic inventory and writing

system

2.1. The Sinhala phonemic inventory

Sinhala is one of the official languages of Sri
Lanka and the mother tongue of the majority - 74% of
its population. Spoken Sinhala contains 40 segmental

phonemes; 14 vowels and 26 consonants as classified
below in Table 1 and Table 2 [4].

Table 1: Spoken Sinhala vowel classification

Front Central Back

Short Long Short Long Short Long

High i i: u u:

Mid e e: ə ə: o o:

Low æ æ: a a:

Table 2: Spoken Sinhala consonant classification1

 Lab. Den. Alv. Ret. Pal. Vel. Glo.

Unvoiced p t̪ ʈ k Stops

Voiced b d̪ ɖ g
Unvoiced ʧ Affricates

Voiced ʤ
Pre-nasalized
voiced stops

mb nd̪ ɳɖ ŋg

Nasals m n ɲ ŋ
Trill r
Lateral l

Unvoiced f s ʃ h Fricatives

Voiced v
Approximants j

There are four nasalized vowels occurring in two or

three words in Sinhala. They are /ã/, /ã:/, /ǣ/ and /ǣ:/ [4].
Spoken Sinhala also has following Diphthongs; /æi/, /iu/,
/eu/, /æu/, /ou/, /au/, /ui/, /ei/, /oi/ and /ai/.

A separate sign for vowel /ə/ is not provided by
the Sinhala writing system. In terms of distribution, the
vowel /ə/ does not occur at the beginning of a syllable
except in the conjugational variants of verbs formed
from the verbal stem “කර” /kərə/ (to do). In contrast to
this, though the letter “ඦ”, which symbolizes the pre-
nasalized consonant /nȴ/ exists, it is not considered a
phoneme in Sinhala.

2.2. The Sinhala writing system

The Sinhala character set has 18 vowels, and 42
consonants as shown in Table 3.

1 Labial, Dental, Alveolar, Retroflex, Palatal, Velar, Glottal

Table 3: Sinhala character set

Vowels and corresponding vowel modifiers (within
brackets):
අ ආ(◌ා) ඇ(◌ැ) ඈ(◌ෑ) ඉ(◌ ි) ඊ(◌ ී) උ(◌ ු) ඌ(◌ ූ) ඍ(◌ෘ) ඎ(◌ෲ)
ඏ(◌ෟ) ඐ(◌ෳ) එ(ෙ◌) ඒ(ෙ◌ ේ) ඓ(ෛ◌) ඔ(ෙ◌ො) ඕ(ෙ◌ෝ)
ඖ(ෙ◌ෞ)

Consonants:
ක ඛ ග ඝ ඞ ඟ ච ඡ ජ ඣ ඤ ඦ ට ඨ ඩ ඪ ණ ඬ ත ථ ද ධ න ඳ ප
ඵ බ භ ම ඹ ය ර ල ව ශ ෂ ස හ ළ ෆ ◌ං ◌ඃ

Special symbols: ◌O ◌P Q ඥ
Inherent vowel remover (Hal marker): ◌ ්

Sinhala characters are written left to right in horizontal
lines. Words are delimited by a space in general. Vowels
have corresponding full-character forms when they appear
in an absolute initial position of a word. In other positions,
they appear as ‘strokes’ and, are used with consonants to

denote vowel modifiers. All vowels except “ඎ” /iru:/, are

able to occur in word initial positions. The vowel /ə/ and

/ə:/ occur only in loan words of English origin. Since there
are no special symbols to represent them, frequently the
character “අ” is used to symbolize them [4].

All consonants occur in word initial position

except “◌ං” /ŋ/ (Anusvaraya) and the nasals. The

symbols “ණ”, and “ළ” represent the retroflex nasal /ɳ/

and the retroflex lateral /ɭ/ respectively. But they are
pronounced as their respective alveolar counterparts

“න”-/n/ and “ල”-/l/. Similarly, the symbol “ෂ”

representing the retroflex sibilant /ʂ/, is pronounced as

the palatal sibilant “ශ”-/ʅ/. The corresponding
aspirated symbols of letters ක, ග, ච, ජ, ට, ඩ, ත, ද, ප, බ
namely ඛ, ඝ, ඡ, ඣ, ඪ, ථ, ධ, ඵ, භ respectively are
pronounced like the corresponding un-aspirates [4].

When consonants are combined with /r/ or /j/, special

conjunct symbols are used. “T”-/r/ immediately
following a consonant can be marked by the symbol
“◌O” added to the bottom of the consonant preceding it.

Similarly, “U”-/j/, immediately following consonant
can be marked by the symbol “◌P” added to the right-

hand side of the consonant preceding it [4]. “ඏ” /ilu/

and “ඐ” /ilu:/ do not occur in contemporary Sinhala.
Thus, only 40 phonemes are necessary to represent the
60 symbols in the language.

3. Diphone database construction

Designing, recording, and labeling a complete
diphone database is a laborious and a time consuming
task. The overall quality of the synthesized speech is

entirely dependent on the quality of the diphone
database. This section describes the methodology
adopted in the construction of Sinhala diphone
database.

Prior to constructing the diphone database, the
answers to the following two questions were
investigated [9]: What diphone-pairs exist in the
language? What carrier words should be used?
Generally, the number of diphones in a language is
roughly the square of the number of phones.
Therefore, 40 phonemes for Sinhala identified in
section 2.1 suggest roughly 1600 diphones should
exist. The first phase involved the preparation of
matrices mapping all possible combinations of
consonants and vowels; i.e. CV, VC, VV, CC, _V,
C, C and, V_. Here ‘_’ denotes a short period of
silence. Silence is also considered a phoneme, usually
taken at the beginning and ending of the phonemes to
match the silences occurring before, between and after
words; they are therefore an important unit within the
diphone inventory. In the second phase, redundant
diphones were marked to be omitted from the
recording. Due to various phonotactic constraints, not
all phone-phone pairs occur physically (for instance,
diphone “mb-ŋg” never occurs in Sinhala). All such
non-existent diphones were identified after consulting
a linguist. Finally, 1413 diphones were determined.

The third phase involved in finding the answer to
the second question; what carrier words should be
used? In other words, to compile set of words each
containing an encoded diphone. Following the
guidelines given in the Festvox manual [1] it was
decided to record nonsense words containing the
targeted diphone. These nonsense words were
embedded in carrier sentences including four other
nonsensical context words. A care was taken when
coining these nonsensical words, so that these words
act in accordance with phonotactics of the Sinhala
language. The diphone is extracted from the middle
syllable of the middle word, minimizing the
articulatory effects at the start and end of the word.
Also, the use of nonsensical words helped the speaker
to maintain a neutral prosodic context. The output of
the third phase was 1413 sentences.

The fourth phase involved recording the
sentences. A native professional male speaker chosen
for recording practiced the intelligibility and
pronunciation of the sentences. He was advised to
maintain a constant pitch, volume, and fairly constant
speech rate during the recording. In order to maintain
all of the above stated aspects, recordings were
limited to two 30-minute sessions per day. At each
session, 100 sentences were recorded on average.

Recording was done in a professional studio with
an optimum noise free environment. Initially the
sentences were directly recorded to Digital Audio
Tapes, and later transferred into wave files,
redigitising at 44.1 kHz/16 bit quantization.

The most tedious and painstaking tasks were
carried out in the fifth phase where the recordings
were split into individual files, and diphone
boundaries hand-labeled using the speech analysis
software tool ‘Praat’2. Afterwards, a script was written
to transform Praat text-grid collection file into
diphone index file (EST) as required by Festival [1].

The method for synthesis used in this project is
Residual Excited Linear Predictive Coding (RELP
Coding). As required by this method, pitch marks,
Linear Predictive Coding (LPC) parameters and LPC
residual values had to be extracted for each diphone in
the diphone database. The script make_pm_wave
provided by speech tools [1] was used to extract pitch
marks from the wave files. Then, the make_lpc
command was invoked in order to compute LPC
coefficients and residuals from the wave files [1].
Having tested synthesizing different diphones, several
diphones were identified problematic. An analysis of
the errors revealed that most were due to incorrect
pitch marking caused by the use of default parameters
when extracting the pitch marks. The accurate
parameters obtained by analyzing samples of speech
with Praat were set in the scripts as per the guidelines
given in [7]. Moreover, it was realized that lowering
the pitch of the original wave files resulted in a more
lucid speech. A proprietary software tool was used to
lower the recorded pitch, and normalize it in terms of
power so that all diphones had an approximately
equivalent power. Subsequently, modified
make_pm_wave and make_lpc scripts were used
to extract the necessary parameters from the wave
files. These overall post-processing steps significantly
improved the voice quality.

The final step was to group the diphone database
in order to make it accessible for Festival’s UniSyn;
the synthesizer module, and to make it ready for
distribution. Preparing complete inventory of the
diphones took virtually three months. A full listing of
the scripts used for recording and creating the diphone
database is available for download from
http://www.ucsc.cmb.ac.lk/ltrl/si.

4. Natural language processing modules

2 Available from: http://www.praat.org

When building a new voice using Festvox [1],
templates of the natural language processing modules
required by Festival are automatically generated as
Scheme files. The NLP modules should be customized
according to the language requirements. Hence, the
language specific scripts (phone, lexicon,
tokenization) and speaker specific scripts (duration
and intonation) can be externally configured and
implemented without recompiling the system [1], [9].
The NLP related tasks involved when building a new
voice are [1], [5]:

• Defining the phone-set of the language

• Tokenization and text normalization

• Incorporation of letter-to-sound rules

• Incorporation of syllabification rules

• Assignment of stress patterns to the
syllables in the word

• Phrase breaking

• Assignment of duration to phones

• Generation of f0 contour.

4.1. The phone set definition

The identified phone-set for Sinhala in section 2.1
is implemented in the file
festvox/ucsc_sin_sdn_phoneset.scm. This module
defines the phones and describes their features. The
proposed set of symbol scheme is found to be a
versatile representation scheme for Sinhala phone-set.
Along with the phone symbols, features such as vowel
height, place of articulation and voicing are defined.
Apart from the default set of features, new features
that are useful in describing Sinhala phones are also
defined. E.g. whether a consonant is pre-nasalized or
not. These features will prove extremely useful when
implementing prosody.

4.2. Tokenization and text normalization

The default text tokenization methodology
implemented in Festival (which is based on white-
space, and punctuation characters) is used to tokenize
Sinhala text. Once the text has been tokenized, text
normalization is carried out. This step converts digits,
numerals, abbreviations, and non-alphabetic
characters into word sequence depending on the
context. Text normalization is a non trivial task.
Therefore, prior to implementation, it was decided to
analyze running text obtained from a corpus. Text

obtained from the category “News Paper > Feature

Articles > Other” of the UCSC Sinhala corpus BETA
was chosen due to the heterogeneous nature of these
texts and hence better representation of the language
in this section of the corpus3. A script was written to
extract sentences containing digits from the text
corpus. The issues were identified by thoroughly
analyzing the sentence. Strategies to address these
issues were devised. A function is implemented to
convert any number (decimal or integer up to 1
billion) into spoken words.

In Sinhala, the conversion of common numbers is
probably more complicated when compared to
English. In certain numerical expressions, the number
may be concluded from a word suffix. e.g. 5V pahen
(out of five), 1 වැW paləvæni (1st). Such expressions
are needed to be identified by taking into
consideration the added suffix in a post-processing
module. A function is implemented to expand
abbreviations into full words. Common abbreviations
found by the corpus analysis are listed, but our
architecture allows easy incorporation of new
abbreviations and corresponding words. In some
situations, the word order had to be changed. For
example, 50% must be expanded as “Xයයට පනහ” -
si:jəjaȘə panəha (percent hundred), 50m should be
expanded as YටT පනහ - mi:Șər panəha (meters fifty).
All above mentioned functions are called effectively
by analyzing the context, and then accurate
expansions are obtained.

The tokenization and text normalization modules
are implemented in
festvox/ucsc_sin_sdn_tokenizer.scm and capable of
normalizing elements such as numbers, currency
symbols, ratios, percentages, abbreviations, Roman
numerals, time expressions, number ranges, telephone
numbers, email addresses, English letters and various
other symbols.

4.3. Letter-to-sound conversion

The letter-to-sound module is used to convert an
orthographic text into its corresponding phonetic
representation. Sinhala being a phonetic language has
an almost one-to-one mapping between letters and
phonemes.

We implemented the grapheme to phoneme
(G2P) conversion architecture proposed by Wasala et
al. in [10]. In this architecture, the UTF-8 textual
input is converted to ASCII based phonetic

3 This accounts for almost two-thirds of the size of this
version of the corpus

representation defined in the Festival. This process
takes place at the user-interface level. Owing to the
considerable delay experienced when synthesizing the
text, it was decided to re-write the above G2P rules in
the Festival’s context sensitive format [1]. The rules
were re-written in UTF-8 multi-byte format following
the work done for Telugu language [3]. The method
was proven to work well causing no delay at all. The 8
rules proposed in [10] expanded up to 817 rules when
re-written in context sensitive format. However, some
frequently encountered important words were found
incorrectly phonetized by these rules. Hence, such
words along with their correct pronunciation forms
were included in Festival’s addenda, a part lexicon.
The letter-to-sound rules and lexicon are implemented
in festvox/ucsc_sin_lexi.scm.

Festival’s UTF-8 support is still incomplete;
however, we believe the above architecture as the best
to deal with Unicode text input in Festival over other
proposed methods [12], [10].

4.4. Syllabification & stress assignment

Instead of Festival’s default syllabification
function lex.syllabify.phstress based on
sonority sequencing profile [1], a new function
(syllabify ‘phones) is implemented to
syllabify Sinhala words. In this work, syllabification
algorithm proposed by Weerasinghe et al. [11] is
implemented. This algorithm is reported to have
99.95% accuracy [11]. The syllabification module is
implemented in festvox/ucsc_sin_sdn_syl.scm.

4.5. Phrase breaking algorithm

The assignment of intonational phrase breaks to
the utterances to be spoken is an important task in a
text-to-speech system. The presence of phrase breaks
in the proper positions of an utterance affects the
meaning, naturalness and intelligibility of speech.
There are two methods for predicting phrase breaks in
Festival. The first is to define a Classification and
Regression Tree (CART). The second and more
elaborate method of phrase break prediction is to
implement a probabilistic model using probabilities of
a break after a word based on the part of speech of the
neighboring words and the previous word [1].
However, due to the unavailability of a Part-of-Speech
(POS), and a POS tagger for Sinhala, probabilistic
model cannot be constructed yet. Thus, we opted for
the simple CART based phrase breaking algorithm
described in [1]. The algorithm is based on the
assumption that phrase boundaries are more likely

between content words and function words. A rule is
defined to predict a break if the current word is a
content word and the next is seemingly a function
word and the current word is more than 5 words from
a punctuation symbol.

This algorithm, initially developed for English,
has proved to produce reasonable results for Sinhala
as well. The phrasing algorithm is defined in
festvox/ucsc_sin_sdn_phrase.scm.
4.6. Prosodic analysis

Prosodic analysis is minimal in the current system
and will be implemented in the future. The major
challenge for building prosody for Sinhala is the lack
of a POS tag-set, POS tagger and tagged text corpus.
An experiment was carried out to adapt CART trees
generated for an English voice prosody (f0 &
duration) modules into Sinhala. The CART trees were
carefully modified to represent the Sinhala Phone-set.
The phone duration values were also hand modified to
incorporate natural phone durations. The above steps
resulted in more natural speech when compared to the
monotonous speech produced before incorporating
them. These adapted modules (cmu_us_kal_dur.scm,
cmu_us_kal_int.scm) are incorporated to the Festival-
si system.

5. Integration with different platforms

Festival offers a powerful platform for the
development and deployment of speech synthesis
systems. Since most Linux distributions now come
with Festival pre-installed, the integration of Sinhala
voice in such platforms is very convenient.
Furthermore, following the work done for Festival-te,
the Festival Telugu voice [3], the Sinhala voice
developed here was made accessible to GNOME-
Orca4 and Gnopernicus5 - powerful assistive screen
reader software for people with visual impairments.

The next task involved the building of Festival
support natively on Windows. It is noteworthy to
mention the modification to Festival’s text reading
module as part of this task. We experienced that
Festival is incapable of reading UTF-8 text files with
byte-order marker (BOM). UTF-8 text files saved by
Windows Notepad or OpenOffice Word will always
include the byte-order-marker. Festival fails to read
such files and will give an error “Un-pronunciation
word”. Manual removal of BOM from file each time
proved to be a repetitive process. Therefore, a short

4 Available from: http://live.gnome.org/Orca
5 Available from: http://www.baum.ro/gnopernicus.html

patch was written to make Festival capable of reading
text files with UTF-8 byte-order-marker. The patch is
available for download from
http://www.ucsc.cmb.ac.lk/ltrl/si.

Motivated by the work carried out in the Welsh &
Irish Speech Processing Resources (WISPR) project
[12], steps were taken to integrate Festival along with
the Sinhala voice into the Microsoft Speech
Application Programming Interface (MS-SAPI) which
provides the standard speech synthesis and speech
recognition interface within Windows applications
[13]. As a result of this work, the MS-SAPI compliant
Sinhala voice is accessible via any speech enabled
Windows application. We believe that the visually
impaired community would be benefited at large by
this exercise owing to the prevalent use of Windows
in the community. The Sinhala voice also proved to
work well with Thunder6 a freely available screen
reader for Windows. This will cater to the vast
demand for a screen reader capable of speaking
Sinhala text. It is noteworthy to mention that for the
first time the print disabled community in Sri Lanka
will be able to work on computers in their local
language by using the current Sinhala text-to-speech
system.

6. Evaluation

Text-to-speech systems can be compared and

evaluated with respect to intelligibility, naturalness,
and suitability for used application [6]. As the Sinhala
TTS system is a general-purpose synthesizer, a
decision was made to evaluate it under the
intelligibility criterion.

A Modified Rhyme Test (MRT) [6], [9] was
designed to test the Sinhala TTS system. The test
consists of 50 sets of 6 one or two syllable words
which makes a total set of 300 words. The words are
chosen to evaluate phonetic characteristics such as
voicing, nasality, sibilation, and consonant
germination. Out of 50 sets, 20 sets were selected for
each listener. The set of 6 words is played one at the
time and the listener marks the synthesized word. The
overall intelligibility of the system from 20 listeners is
found to be 71.5%. This is the first known
documented work on a Sinhala text-to-speech
synthesizer, and also the first Sinhala TTS system,
which had been evaluated.

7. Conclusions and future work

6 Available from: http://www.screenreader.net/

In this paper we described the development and

evaluation of the first TTS system for Sinhala
language based on the Festival architecture. The
design of a diphone database and the natural language
processing modules developed has been described.

Future work will mainly focus on improving the
naturalness of the synthesizer. Work is in progress to
improve the prosody modules. A speech corpus
containing 2 hours of speech has been already
recorded. The material is currently being segmented,
and labeled. We are also planning to improve the
duration model using the data obtained from the
annotated speech corpus. A number of other ongoing
projects are aimed at developing a POS tag set, POS
tagger and a tagged corpus for Sinhala. Further work
will focus on expanding the pronunciation lexicon. At
present, the G2P rules are incapable of providing
accurate pronunciation for most compound words.
Thus, we are planning to construct a lexicon
consisting of compound words along with common
high frequency words found in our Sinhala text
corpus, which are currently incorrectly phonetized.

All resources developed under this project are
made available at: http://www.ucsc.cmb.ac.lk/ltrl/si.

8. Acknowledgements

This work was made possible through the PAN

Localization Project, (http://www.PANL10n.net) a
grant from the International Development Research
Center (IDRC), Ottawa, Canada, administered through
the Center for Research in Urdu Language Processing,
National University of Computer and Emerging
Sciences, Pakistan.

9. References
[1] A.W. Black, and K.A. Lenzo, Building Synthetic

Voices, Language Technologies Institute, Carnegie
Mellon University and Cepstral LLC. Retrieved from:
http://festvox.org/bsv/, 2003.

[2] R.J. Jones, A. Choy and B. Williams, “Integrating
Festival and Windows”, InterSpeech 2006, 9th

International Conference on Spoken Language

Processing, Pittsburgh, USA, 2006.

[3] C. Kamisetty and S.M. Adapa, Telugu Festival

Text-to-Speech System. Retrieved from: http://festival-
te.sourceforge.net/wiki/Main_Page, 2006.
[4] W.S. Karunatillake, An Introduction to Spoken

Sinhala, 3rd edn., M.D. Gunasena & Co. ltd., 217,
Olcott Mawatha, Colombo 11, 2004.

[5] S.P. Kishore, R. Sangal and M. Srinivas, “Building
Hindi and Telugu Voices using Festvox”, Proceedings

of the International Conference On Natutal Language

Processing 2002 (ICON-2002), Mumbai, India, 2002.

[6] S. Lemmetty, Review of Speech Synthesis

Technology, MSc. thesis, Helsinki University of
Technology, 1999.

[7] A. Louw, A Short Guide to Pitch-Marking in the

Festival Speech Synthesis System and

Recommendations for improvement. Local Language
Speech Technology Initiative (LLSTI) Reports.
Retrieved from: http://www.llsti.org/documents.htm,
(n.d.).

[8] A.G. Ramakishnan, K. Bali, P.P. Talukdar and
N.S. Krishna, “Tools for the Development of a Hindi
Speech Synthesis System”, In 5th ISCA Speech

Synthesis Workshop, Pittsburgh, 2004, pp. 109-114.

[9] Ö. Salor, B. Pellom and M. Demirekler,
“Implementation and Evaluation of a Text-to-Speech
Synthesis System for Turkish”, Proceedings of

Eurospeech-Interspeech 2003, Geneva, Switzerland,
2003, pp. 1573-1576.

[10] A. Wasala, R. Weerasinghe and K. Gamage,
“Sinhala Grapheme-to-Phoneme Conversion and Rules
for Schwa epenthesis”, Proceedings of the

COLING/ACL 2006 Main Conference Poster Sessions,
Sydney, Australia, 2006, pp. 890-897.

[11] R. Weerasinghe, A. Wasala, and K. Gamage, “A
Rule Based Syllabification Algorithm for Sinhala”,
Proceedings of 2

nd
 International Joint Conference on

Natural Language Processing (IJCNLP-05), Jeju
Island, Korea, 2005, 438-449.

[12] B. Williams, R.J. Jones and I. Uemlianin, “Tools
and Resources for Speech Synthesis Arising from a
Welsh TTS Project”, Fifth Language Resources and

Evaluation Conference (LREC), Genoa, Italy, 2006.

[13] Microsoft Corporation.: Microsoft Speech SDK

Version 5.1, Retrieved from:
http://msdn2.microsoft.com/en-
s/library/ms990097.aspx, (n.d.).

