PAN
Localization

From Protocol to Production:
Implementing the IDNs

Sarmad Hussain
Rabia Sirhindi
Nayyara Karamat

Center for Research in Urdu Language Processing
National University of Computer and Emerging Sciences

IDRC 3k CRD!

Canada

www.nu.edu.pk www.idrc.ca

Copyrights © 2009

Center for Research in Urdu Language Processing
National University of Computer and Emerging Sciences
Lahore, Pakistan

Printed by Walayatsons, Pakistan

ISBN: 978-969-8961-09-1

This work was carried out with the aid of a grant from the International Development
Research Centre (IDRC), Ottawa, Canada, administered through the Centre for
Research in Urdu Language Processing (CRULP), National University of Computer and

Emerging Sciences (NUCES), Pakistan.

Preface

Internationalized Domain Names (IDNs) are sure to extend the reach of the Internet
to all the linguistic communities, and make it truly global. Development of this
protocol has been a laborious process, which has taken a decade to mature, and is
now being approved as this report goes for printing. The main challenges in the
development of IDNs have been the need to keep the existing highly distributed
Internet stable and secure as the namespace expands, while concurrently
supporting a variety of writing systems, those encoded in Unicode and those which
will be encoded in the future. With the deployment at hand, the near future is sure
to see emerging business models, social experiments and technical solutions
associated with IDNs.

The current report is written for the community, including registrants, registrars,
registries, policy makers and other stakeholders, to give a complete perspective,
especially for the implementation of IDNs. This requires organizing the community
to record linguistic and cultural requirements, translating these requirements into
technical and policy documents, and developing a secure and stable mechanism to
deploy the technology for the end users. There are still many challenges, which will
be faced as the community experiments with this new technology. However, the
careful pace of the development of IDNs, due to the very cautious approach of all
those involved, will surely make this journey safer. This has been the purpose of the
revision of IDNA and institution of the Fast Track process.

We have learnt much about IDNs from interactions with colleagues over the past
few years, which has made this work possible. In the context, we would want to
acknowledge our country partners in the PAN Localization project who have helped
us gather the requisite data presented in this report. We would also acknowledge
the learning we have acquired through the many long and energetic discussions at
Arabic Script IDN Working Group (ASIWG) meetings, during IDN Implementation
Working Group of ICANN and during ICANN and IGF meetings. We are equally
indebted to IDRC, Canada for the financial support provided through PAN
Localization project and otherwise, which has assisted travel to ICANN and IGF
meetings, and enabled the technical collaboration of the partner countries in the
project. We would also like to acknowledge the ICANN Fellowship program which
has supported our travel to ICANN meetings over past two years, and appreciate our
university management who has been very encouraging in the whole process.
Finally, we would like to thank Maria Ng Lee Hoon, Phyllis Lim, Phet Sayo, Adel El
Azem at IDRC and Sana Gul and Ammara Shabbir at the PAN Localization regional
secretariat for valuable ideas and invaluable support.

Sarmad Hussain
Rabia Sirhindi
Nayyara Karamat
(Lahore, Pakistan)

PAN Localization Project

PAN Localization Project (www.PANL10n.net) is a regional initiative to develop
local language computing capacity in Asia. It is a collaboration between Pan Asia
Networking (PAN) program of IDRC, Canada (www.IDRC.ca) and Centre for
Research in Urdu Language Processing (www.CRULP.org) at National University of
Computer and Emerging Sciences, Pakistan (www.nu.edu.pk) to generate
technology, build human resource capacity, and advance policy for local language
content creation, access and use across Asia.

This project has been divided into two phases. Phase-I (2003-2007) focused on
developing local language standards and technology across the partner Asian
countries including Afghanistan (Pashto), Bangladesh (Bangla), Bhutan (Dzongkha),
Cambodia (Khmer), Laos (Lao), Nepal (Nepali) and Sri Lanka (Sinhala, Tamil). Some
major milestones achieved in Phase [include development of Linux distributions for
Dzongkha and Nepali, working OCR systems for Sinhala, Bangla and Lao, Lexicon
and spell checking utility for Bangla, Dzongkha, Khmer, Lao and Nepali, Text To
Speech System for Sinhala and standards for local keyboards, collation sequences
and fonts for a number of these languages. Phase II (2007-2010) aims to advance
this work, with the following objectives:

1. Examine effective means to develop digital literacy through the use of local
language computing and content.

2. Explore development of sustainable human resource capacity for R&D in
local language computing as a means to raise current levels of technological
support for Asian languages.

3. Advance policy for development and use of local language computing and
content.

4. Study and develop coherent instruments to gauge the effectiveness of multi-
disciplinary research concerning the adoption of local language technology
by rural communities.

Phase II of the project has been extended geographically and linguistically to include
Afghanistan (Pashto), Bangladesh (Bangla), Bhutan (Dzongkha), Cambodia (Khmer),
China (Tibetan), Indonesia (Bahasa), Laos (Lao), Mongolia (Mongolian), Nepal
(Nepali), Pakistan (Urdu) and Sri Lanka (Sinhala, Tamil). The teams have not only
been working to enhance the technology already developed in the first phase, but
are also actively collaborating to deploy this technology to different end-user
groups. The project has been evaluating local language computing adoption models
across these countries. IDNs have also been a focus area of this research from
policy, technology and deployment perspectives.

Table of Contents

1 INTRODUCTION ..o icereeeseesseesseesserssesssessssesssesssessssessessssssssesssesssessssesssesssesssessssssssesssessssssssssssesssesssessasssasesseees 1
1.1 WHAT ARE IDNS ot ssssssss st ssss s ssss s ssssss st sesssssssns 1
1.2 HISTORY OF IDNS ot sssssssssssssssssssssssssssss st sesssssssns 4
1.3 CURRENT STATUS OF IDNS ..oeuicuerreeseessersessseesseesseesseessesssesssessssssssssssssssssssssssssssesssessssssssssssesass 5
1.4 WHO MAKES THE IDNS WORK.....cciiereerrersees s sesssssssssesssessesssssssssssssssssssssssssnss 6

1.4.1 INTERNET SOCIETY weuvtreveustrereuseressssssessssesessssessasssessssssessssssesssssssssssssessssssessssssesssesssssssssessssessasssssssssns 6
1.4.2 IETF, IAB AND IESG ..o ssssssssssssssssss s ssnens 7
1.4.3 INTERNET CORPORATION FOR ASSIGNED NAMES AND NUMBERS (ICANN) ...ccoovummnrreeeenns 8
1.4.4 INTERNET GOVERNANCE FORUM ..turtrieurercstrerestseessssesessssessssssessssssessasssessssssessasesesssssnsassseneas 10
1.4.5 UNICODE CONSORTIUM w.couuiiusrisssasssssssssasssssans 10
1.5 STEP-WISE GUIDE TO IMPLEMENTATION OF IDNS...coomummmmnisssssssssssssssssssssens 10
1.5.1 CHOICE OF LANGUAGE(S) AND SCRIPT(S) BASED ON THE TARGET USER COMMUNITY... 10
1.5.2 DETERMINING THE IDN TLD STRING AND VARIANTScuveeeerersrreresaneresssesessssessssssessasssenees 11
1.5.3 DEVELOPING LANGUAGE/SCRIPT TABLE......ocsumeurernssrssnsssssssssssssssssssssssssessessessssssssessssssssssnes 11
1.5.4 DEPLOYMENT OF IDNS....couiriinsirnsisssesss 11

2 PREPARATION OF AN IDN LABEL ..o seeeseesssessessseesssesssesssssssssssssssssssessssssssssssesssssssessans 13

2.1 PROTOCOL — The BaSeliNe......occriuereeiereeeereesseeseseesessseseessessessesssesessssssssssssssssssssssssssssssssssssssnes 14

2.11 CHARACTER-LEVEL SPECIFICATION....cstrtureuseesresessssessessssessessssessessssssessssessesssssasesssssssesssssssens 14
2.1.11 PVALID ChAraCLEI'S ..ucuieueeeeeeseeseeseesssseessssssssesssssssssesssssssssssssssssssesssssssssssssssssssssanes 15
2.1.1.2 CONTEXT O/] CRaracters. ... ereereeueeseessessessesssssssssessssssessssssssssssssssessssssssssssssssees 15
2.1.1.3 DISALLOWED CRATaCEETS ...vueeereererecereesesseessesseessse s ssesssssssssesssesssssssssessessssssssnes 15
21.1.4 UNASSIGNED .ot ssssssssssssssssssssssasssass 15
2.1.1.5 0 (1=] 010 1) ¢ 1] PP 15
2.1.1.6 Representation SChEMES. ...t se s sessras 16
2.1.2 MORPHOLOGICAL CONSTRAINTS AND LICENSING w.covurereusrreresreressssssesasssessssssessssesesssssssasssesens 17
2.1.2.1 Constraining the HYPhemn ... sesssssssssssseessessnns 17
2.1.2.2 Restricting Combining Marks and Combining Characters.........eeenn. 17
2.1.2.3 Licensing Contextual CharacCters ... neneneesseessessessessssssesssessesenees 17
2.1.3 SEMANTIC COLLAPSING coucuttreeussrersssssessssesessssesessssessssssesssssessssssessssssesssssssssssessssssessasssssssssssasssesens 19
2.1.3.1 NOTMAIIZATION co.vvereeeeeresreseesserse et sese e s s ss s sees s ss s 19
2.1.4 PRAGMATIC CONSIDERATIONS FOR BACKWARD COMPATIBILITY ..cuvurtrereererensareresssseeassrenens 21
2.2 USER REQUIREMENTS - Cutting the Protocol to SizZe ... 21
221 CHARACTER-LEVEL SPECIFICATION....costsiureseesresessssessessssessessssessessssssessssessesssssssesssssssesssssssens 21
2.2.11 SVALID CRATACEET'S w.ceueueeeeereirerssessessessssssesssssessssssssssssssssssssssssssssssssssssesssssssssssssssasees 21
2.21.2 LVALID CRATACLET'S ..ccuieueeeeueenneereesseesesseesessssssesssssssssesssesssssessssssssasssssssssssssssssssssssanes 22
2.2.2 MORPHOLOGICAL CONSTRAINTS wuveurureresrreesssesessssessasssessssssessssssesssssssssssssessssssessssssssssssnsasssesens 31
2.2.2.1 SCTIPE MIXING e 31
22272 DigIt MIXING oot sssns 32
2.2.3 SEMANTIC DISAMBIGUATION ..cooveeurureacureresssesessresessssessasssessssssesssseseassssssssssessssssessasssesssssnsasssesens 33
2.2.31 Extended NOrmaliZation ... eesseesessessessssssssssessessesssesnes 33
2.2.3.2 Variant Mapping ... 37
2.2.3.3 Script Level Case FOIAING ... ecerereeseeseeeseesseesseesssessesssessseesssesssssssesssssnns 38
2.2.4 PRAGMATIC CONSIDERATIONS - USER CULTURAL CONVENTIONS AND PREFERENCES 38
2.24.1 DIGIES couivirsseersirsis s s 39
2.2.4.2 Label SEPATatorS...coemirnerssensssnessssssessssssssss st s ssssss s ssssssssssssssssssssesssssnes 39
2.24.3 Honorifics and Other SYMDOIS ... ssessseesseesseeenns 39
2.2.44 Technology Maturity and Localization SUPPOTt....c.cceeneneeneerseeseereesserneens 39

3 RELAYING THE IDN LABELS “ON THE WIRE"overeereerseerseeesseessessssessessseesseesssesssessssesssesnss 41

3.1 PHYSICAL MAPPING OF THE LOGICAL LAYERSoceerererreersseessesssseessessssessssessssenens 41
3.2 ROLE OF CLIENT APPLICATION ...ouuiitrmersesrmsssssessssesssess 41
3.2.1 RESOLUTION PROCESS...cuttttierenssnssesssssesssssesssssessssesssssessssssessssssesssssssssssssesssssssssssssssssssssasssssens 42
3.3 ROLE OF REGISTRY wottereeererreesseerseeesseesseessessesssesssesssessssessssssssssssssssssssssssesssessssssssesssssssessssssssessaees 43
331 REGISTRATION PROCESSucvuureeesserssessssessseesssessssesssssssssssssssessssessssesssssssssssssssessssessssssssssssssseseas 43
3.3.2 REGISTRATION POLICY couvvuuieruseerseesssssssessssesssssssssssssssssssssssssessssesssssssssssssssssssssssssssssssssssssssasessas 48
3.3.21 Handling REAUNAANCYoceemeeereeereeeseesesesssesssesessesseessesssesssesssesssessssssssssssssssessans 49
3.3.2.2 DiSPULE RESOIULION ..ottt ss s nees 49
3.3.23 L LT3 PR 50
3.3.24 PIACIIEZ ettt et et ees et st s s bbb bR b 50
3.3.25 Security CONSIAETAtiONS ...vceeeureeereereeeeese s e sseessees s sssessssesessnss 50
3.3.3 RESOLUTION PROCESS.....uceuueesuseeesseesssesssessssessssessssesssssssssssssssessssesssssssssssssssessssessssesssssssssssssasessas 50
3.4 ROLE OF ROOT .ccoireriismssssssessssesssssesssssssssssssssssssesssssssssssssssesssssssssessssssssssssssssssssessssssssssssssssssssesses 51
3.5 CASE-STUDIES. ...t ssssssssssssssssssss s sssasssses 51
3.51 JOINT ENGINEERING TEAM (JET) cooeeueeeeemseereersersseesseesssesseesseesseessesssssesssessssesssssssessssssssssans 52
3.5.1.1 HISEOTY weuteueereeureiseseessee s sses s ss b s bbb s bbbt b 52
3.5.1.2 ACHIVITIES oottt s s s R 52
3.5.2 RUSSIAN LANGUAGE WORK GROUP /CYRILLIC LANGUAGE INTERNET NAMING
L0000 024 L0 53
3.5.2.1 HISEOTY weureueereeureeseseesseessesse et sessse bbb ssses s s bbb s 53
3.5.2.2 ACHIVITIES oottt s s s s R 53
3.5.3 INTERNATIONAL FORUM FOR INFORMATION TECHNOLOGY IN TAMIL c.cvvevererersrrereassrenens 54
3.5.3.1 HISEOTY weureuetseeuseeseseesseessesse st see s s s bbb s bbb bbb 54
3.5.3.2 ACHIVITIES oottt e b s R 54
3.5.4 ARABIC SCRIPT IDNS WORKING GROUP.....ovrururssssssisssnes 54
3.54.1 3 1] 0) oy 2P 54
3.5.4.2 ACHIVITIES ettt ettt s s s s b 54
4 THE NEXT STEP - FAST TRACK PROCESSsviierirstrssessens 56
4.1 PARTICIPATION CRITERIA ...onienrerssssssisssass 56
4.2 IDN cCTLD STRING CRITERIA .o reieeeerreemeersersesseesssesseessessesssessseesssssssssssssssessssesssesssesssssssseens 56
4.3 GENERAL PROCESS OVERVIEW.......osieereemeesssessessssssssssssssssssssssssesssssssssssssssssssessssssssass 57
4.4 CONCLUSION.....ccomirirtterssesssessssssssssssssesssssssssessssesssssss s sssssess st s s sssssss s sssssssssssssans 57
REFERENCES ..ottt sssse s ssss s s ssssssssasns 58

Vi

From Protocol to Production: Implementing the IDNs

1 INTRODUCTION

Internet usage has grown rapidly across the world in recent years, with 1.67 billion
people! connected online as of year 2009. This constitutes about a quarter of the
total world population. However, though the reach is formidable, three-quarters of
the world population still remains unconnected. Specifically in the Asian context,
though the number of users are more than any other continent (704 million Asians),
this penetration of the Internet as a percentage of population is still very low (only
18.5% of Asian population)!. In comparison, 74% of North Americans and 50% or
Europeans are connected onlinel. One of the significant reasons behind this
difference is the language barrier to online access. Most of the 2200 languages
spoken by people of Asia are not represented on the Internet. There have been
global efforts to address this challenge. From the inception of Unicode?, which is
striving to encode the scripts used for these languages, to the efforts by World Wide
Web Consortium3 to increase accessibility of the web, the global community has
been working hard to develop standards and frameworks to support
internationalization (i18n) and localization (110n) of applications?.

In the context of the Internet, multilingual support translates to providing (i) ability
to post online content in various scripts and languages, and (ii) access the content
using domain names in these languages [2]. Although both aspects are very critical
for expanding the reach of the Internet, the current work focuses on the recent
developments related to (ii) above. Domain names in different languages and
scripts are also referred to as Internationalized Domain Names (IDNs). This report
provides the background, technical details and implementation process for IDNs.
Current chapter provides the introduction and the background. The second chapter
provides technical details for developing the IDNs. The third chapter gives details
on how the IDNs could be deployed.

1.1 WHAT ARE IDNs

At this time, despite the availability of multilingual content on the Internet,
accessing it requires knowledge of Latin script. This is primarily because the
address on the Internet, the Domain Name [3, 4], uses names composed only from
the following sub-set of Latin characters: Letters a...z, Digits 0...9 and Hyphen,
collectively referred to as LDH. Domain names are a means to access the computer

! Source of population and Internet penetration data: Internet Usage Statistics,
http://www.Internetworldstats.com/stats.htm, accessed on 10" Oct. 2009.

? See www.unicode.org for details.

*See www.w3c.org for details.

4 Briefly, internationalization is the process of designing applications and software products to have
capability to support language-specific interfaces so that they can be adapted to specific cultural,
language and local needs. Localization, on the other hand, refers to the actual adaptation of software
application in a particular language (see [1] for detailed definitions). If the application has been adapted
to support multiple languages, it is said to have multilingual support.

From Protocol to Production: Implementing the IDNs

on which content is located®, though this easy-to-use name is eventually translated
into an Internet Protocol (IP) address, which is a 32-bit number used for actual
addressing. As an example, the domain name www.crulp.org corresponds to [P
address 98.130.35.75 (a series of four numbers each of which can vary from 0..255).
This Domain Name to IP correspondence or mapping is provided by the Domain
Name System (DNS) [3, 4].

DNS is a distributed database which partitions Internet hosts into domains and sub-
domains and forms a tree-like hierarchical structure, where hosts appear as leaf
nodes. At the top of this hierarchy is the parent or root domain. The root servers are
distributed throughout the world [6], as shown in Figure 1.1.

Top-level domains (TLDs) exist under the root domain. These include generic TLDs
(gTLDs) such as com, org, gov, edu, etc., as well as country-code TLDs (ccTLDs) such
as pk, la, mn, sa, ca etc. For example, reading from right to left, the domain name
www.crulp.org. has the following information:

represents the root domain
.org represents the gTLD for organizations
.crulp represents the second-level domain for the organization CRULP
www represents the actual host on which CRULP’s website is hosted

€« 2| C ghtm:fjroot—servers.orgf 7’ O- &~
L]

Poccun
Russia

Legend

, Multiple instances

Single instance

< i]Lij

Figure 1.1. Root Servers (accessed from root-servers.org on 10th October)

> Generically, address to a web resource is referred to as a Uniform Resource Identifier (URI). It points to
an object (webpage, text file, image, etc.) on the Internet. The syntax of URIs is given in RFC 3986 [5].

From Protocol to Production: Implementing the IDNs

The IP address for a host is uniquely determined by traversing a path from the root
node of the tree (representing the root server) to one of the leaf nodes (e.g. www).

Whenever a URI is encountered in a text or entered in the address bar of a browser,
the DNS resolver program on the client forwards a DNS query to the local DNS
server which in turn provides a URL-to-IP address mapping. If the local name server
is not authorized for the domain in question, it queries a relevant name server. This
resolution process may consist of a number of such query-response messages
shown in Figure 1.2 and explained below.

5 ni.
W7 o'}"},j o™ ’!V % Root Domain
B | DMNS Server
\,mn‘ 50 f, = : 10.35.83.77
ot e “‘
-0‘-:1
‘i.f"l _1-11_'1-
ik
What's the IP address of ﬁ What's the |IP address of ﬁ
www.pseudo-corp.com? www.pseudo-corp.com? COM Domain
= =5 — i ~| DNS Server
—=w_= The IP address is : Try DNS server ! 172.20.135
192.168.45 89 dnsl.malaprop.com 1721684512,
i

| pseudo-corp.com
| Domain DMS Server
192.168.45.12

Figure 1.2. DNS Query Resolving Process (accessed from
http://support.novell.com/techcenter/articles/img/nc1999 0203.gif)

A host on some network requests the IP address of a host named
www.pseudo-corp.com. This first DNS query is sent to the local DNS server
called dnsl.malaprop.com (default name-server on the host’s LAN or DNS
server of local Internet Service Provider).

The local DNS server does not find this information (the IP address for
www.pseudo-corp.com) in its zone file. In turn, it sends a query to one of the
root servers at [P address 10.35.83.77.

The root server determines which top-level domain server is authoritative
for the domain .com. It sends the local DNS server the address of .com name-
server, which is 172.20.13.5.

The server dnsl.malaprop.com sends the next query message to the .com
name-server.

The .com server in response sends the IP of the next authoritative server for
domain .pseudo-corp.com which is 192.168.45.12.

From Protocol to Production: Implementing the IDNs

6. The local DNS server then queries the .pseudo-corp.com name-server.

7. The .pseudo-corp.com name-server contains in its zone file the name-to-IP
mapping for the host www. This address record is sent in a DNS response
message to the local name-server.

8. The local DNS replies with the IP address (192.168.45.89) of www.pseudo-
corp.com to the requesting host.

To eventually enable users to access content by typing the domain name in their
own language, the DNS has to be enhanced so that similar query-response process
occurs when a domain name is typed in any language. As the current deployed
system for resolving domain names is based on LDH scheme using 7-bit ASCII
encoding, extending the process to be able to resolve domain names in other scripts
(for other languages) would require a modification of the entire domain name
system®. Owing to the highly distributed nature of DNS, this would be a very
complex task and would have impact on the stability of the complete system.

In order to prevent the change of underlying DNS framework in its entirety, an
application level solution has been developed to handle IDNs on the Internet. The
basic idea is to convert non-ASCII domain name to an ASCII-Compatible Encoding
(ACE) containing only LDH characters which is compatible with the existing DNS.
This mapping to and from IDNs has to be done at the client application, and only
LDH is passed “on the wire”, i.e. within the DNS. As a result, the IDNs are enabled,
but the core DNS system at the back remains unchanged. This system of enabling
IDNs is being referred to as IDNs in Applications (IDNA) because the IDN-to-ACE
mapping is done at the application layer. This is illustrated in Figure 1.3.

Application

ACE

DN — IDN to ACE I DNS
Convertor

Figure 1.3. Schematic Diagram for IDNs in Applications (IDNA)

1.2 HISTORY OF IDNs

Starting from an initial draft on IDNs by Martin Durst in 1996, the practical research
on IDNs started in 1998 at the National University of Singapore, followed by
formation of iDNS Working Group by Asia Pacific Networking Group (APNG). The
next two years saw the establishment of a number of iDNS test beds in various Asia
Pacific countries including China, Japan, Thailand, Taiwan, Hong Kong and
Singapore. IDN prototypes were also developed and demonstrated at different

® One of the reasons is that such domain names need 8-bit encoding as they use Unicode.

From Protocol to Production: Implementing the IDNs

meetings and conferences. The first commercial solution for internationalized
domain names and email addresses was created in 1999 by two private companies
iDNS.net and iEmail.net. In late 1999 IETF held a meeting on IDNs. Meanwhile,
iDNS.net launched the first commercial IDN system in Taiwan which used Chinese
characters. In January 2000, IETF formed a working group on IDNs that was
chartered to identify requirements and develop protocols for allowing the use of
non-ASCII characters in domain names. This was followed by the formation of
Multilingual Internet Names Consortium (MINC) in mid-2000. ICANN formed a work
group on IDNs in March 2001 subsequently forming a committee on IDNs in
September 2001. In 2003, [ETF published standards for implementation of IDNs in
the form of RFCs, collectively referred to as IDNA 2003. Due to the drawbacks in this
standard identified in RFC 4690 [12], revision work on IDNs resumed and is still
underway. The current [ETF working group on IDNs (the IDNAbis Working Group)
has published a revised set of Internet drafts called IDNA 200x7.

1.3 CURRENT STATUS OF IDNs

The work of IDNAbis working group is to ensure the stability of the system for IDNs.
Its work is documented in five Internet drafts namely Definitions, Rationale,
Protocol, IDNA tables and Bidi rules. In addition, there is a sixth informational draft
on mapping. The main charter of the working group is intended to separate IDNA
from specific versions of Unicode using algorithms that determine character validity
based on Unicode character properties [13, 20]. Other goals include separating
registration-time and resolution-time processes for valid IDNs, revising
bidirectional algorithms to produce a deterministic answer to whether or not a label
is allowed and permitting effective use of some scripts that were inadvertently
excluded by IDNA2003. This working group aims to preserve the current DNS.

The status and summary of current IDNAbis draft documents is given below8. The
documents are in the period of Last Call for comments at time of finalization of this

report. This last call will be closed in mid October 2009.

Table 1.1. IDNA 200x Documents

‘ Draft Document Title H Posting Date H Status |
‘draft-ietf-idnabis-defs-11 H2009-09-14 Hln Last Call |
‘draft-ietf-idnabis-rationale-13 H2009-09-14 Hln Last Call |
‘draft-ietf-idnabis-protocol-16 H2009-09-14 Hln Last Call |
‘draft-ietf—idnabis-tables-07 H2009-09-10 Hln Last Call |
\draft-ietf-idnabis-bidi-06 12009-09-28 In LastCall |
‘draft-ietf-idnabis-mappings-04 H2009-09-03 Hln Last Call |

74

x" would be replaced by the year in which the drafts are formalized.

8 Accessed on 11" Oct. 2009 from http://tools.ietf.org/wg/idnabis/.

From Protocol to Production: Implementing the IDNs

1. Internationalized Domain Names for Applications (IDNA): Definitions and
Document Framework (draft-ietf-idnabis-defs-11.txt) — provides definitions
(for terms like A-label, U-label, etc.) and relevant material required to
understand the rest of the documents in the set.

2. Internationalized Domain Names for Applications (IDNA): Background,
Explanation, and Rationale (draft-ietf-idnabis-rationale-13.txt) - provides
overview of the revised IDNA system, its relationship with the older
standards and how different components work.

3. Internationalized Domain Names in Applications (IDNA): Protocol (draft-ietf-
idnabis-protocol-16.txt) - provides the actual IDNA protocol including
registration and look-up time activities to be performed.

4. The Unicode code points and IDNA (draft-ietf-idnabis-tables-07.txt) - provides
a rule-based mechanism to determine if a Unicode code-point can be
included in the list of permitted characters in IDNs. Exception lists are also
tabulated.

5. An Updated IDNA Criterion for Right-to-Left Scripts (draft-ietf-idnabis-bidi-05)
- specifies rules that labels with mixed-direction characters need to satisfy.
Such bi-directional labels contain characters from both left-to-right and
right-to-left scripts.

6. Mapping Characters in IDNA (draft-ietf-idnabis-mappings-04) - provides non-
normative guidelines for operations which can be performed by applications
with user input. It explains the mapping process to yield only permissible
code-points to be passed to the IDNA protocol.

1.4 WHO MAKES THE IDNs WORK

A broad categorization of Internet’'s management tasks includes standardization of
Internet protocols, allocations of Internet resources and Internet governance issues.
The Internet is managed by a number of organizations having distributed roles and
responsibilities.

1.4.1 INTERNET SOCIETY

The Internet Society (ISOC) [46], formed in 1992 supports the technical evolution of
the Internet through seeking involvement of various scientific, academic and
engineering communities, administers educational trainings and seminars all over
the world and develops policies to ensure equal Internet access by people globally.
ISOC also serves as an organizational home for the Internet Architecture Board
(IAB), Internet Engineering Task Force (IETF), Internet Engineering Steering Group
(IESG) and Internet Research Task Force (IRTF). Among these, IETF functions as the
primary body chartered for the design and development of the protocols that run
the Internet infrastructure. The relationship of different organizations within ISOC
is given in Figure 1.4.

From Protocol to Production: Implementing the IDNs

Y

IAB RFC Editor

IESG

Area Directors

(ADs)
A

A

Work Groups
(WGs)

IETF

Figure 1.4. Structure of ISOC

1.4.2 IETF,IAB AND IESG

The Internet Engineering Task Force (IETF) [44] is an open organization comprising
of network researchers, designers, engineers and vendors working in unison
towards the evolution and smooth operation of the Internet. Its mission is to
produce high quality technical documents that help improve the design,
implementation, efficiency and management of the Internet [45]. IETF works in
groups, where each working group is assigned a specific topic or research area
relating to networks. These groups are formed in one of the eight different areas of
scope of IETF, including Applications Area, General Area, Internet Area, Operations
and Management Area, Real-time Applications and Infrastructure Area, Routing
Area, Security Area, and Transport Area.

At the top of the hierarchy is the Internet Society [46] which provides legal and
financial support to the Internet standardization bodies such as IETF. While ISOC is
the public relations liaison for IETF, IAB oversees the technical activities of all IETF
workgroups. It brings into public notice different issues related to the Internet
architecture’s integrity and consistency. It is in charge of reviewing any new
workgroup that is formed under the IETF areas even before it is chartered.

It is IESG’s mandate to manage individual IETF workgroups in that it authorizes
adherence to the process of standardization by particular workgroups. It is involved
in the chartering of work groups and reviewing their output documents as part of
creating standards. IESG comprises of Area Directors, one for each of the eight
specialized areas in IETF. A work group is created and its charter is approved by
IESG. The working group has to adhere to its charter and develop standard
documents, which are then reviewed by the IESG. Once found conformant with the

From Protocol to Production: Implementing the IDNs

charter and tested to fulfill the requirements, the documents are published by the
RFC editor.

A specialized working group for internationalized domain names was established by
IETF under the Applications Area in January 2000 and has ever since been working
towards the standardization of IDNs. The work group, called IDN Work Group, came
up with three standards for the realization of IDNs in applications. Implementation
of most of the commercially deployed IDNs is based on these standards. A new
working group has been formed (called the IDNAbis) which is revising IDN protocol
taking into account the deficiencies of the previous specifications.

1.4.3 INTERNET CORPORATION FOR ASSIGNED NAMES AND NUMBERS (ICANN)

Formed in 1998, Internet Corporation for Assigned Names and Numbers (ICANN)
[42] is a non-profit corporation aimed at managing Internet related functions such
as IP address space allocation and management, generic top-level (gTLDs) and
country-code top-level (ccTLDs) domain name system management, protocol
identifier assignment and root server management. This function was previously
performed by Internet Assigned Numbers Authority (IANA) under the US
government.

ICANN’s mission is to “coordinate, at the overall level, the global Internet’s systems of
unique identifiers, and in particular to ensure the stable and secure operation of the
Internet's unique identifier systems” [43]. ICANN is divided into a number of
committees and supporting organizations. A few to mention are the GAC, ccNSO,
GNSO, ASO and IANA.

The Government Advisory Committee (GAC) [47] provides formal representation of
different countries at ICANN. GAC'’s role is to provide advice and guidance to ICANN
regarding policy issues in naming and addressing activities as they relate to specific
governmental concerns. The formation of GAC has been motivated by the need to
keep Internet a global platform where different countries can provide input and
feedback on secure and reliable execution of Internet’s functions.

Country Code Names Supporting Organization (ccNSO) is another policy-making
organization that takes into account the range of issues associated with country-
code Top Level Domains (ccTLDs, e.g. .pk, .mn, la, .ca). It is formed by ccTLD
managers to provide a global forum for discussion of technical and global policy
issues regarding ccTLDs.

Generic Names Supporting Organization (GNSO) [49] is a successor to ICANN's
Domain Name Supporting Organization (DNSO), responsible for handling technical
and policy related issues regarding generic top-level domains (gTLDs, e.g. .org, .net,
.info).

From Protocol to Production: Implementing the IDNs

Address Supporting Organization (ASO) [51] is a supporting organization formed in
1999 as a result of the collaboration of three Regional Internet Registries, APNIC,
AFNIC and RIPE NCC. Its purpose is to advise ICANN on IP addressing policy.

A complete structure of ICANN is illustrated in Figure 1.5.

Governmental Advisory

Ombudsman BOARD OF DIRECTORS iy
I e (]
President / CEO]
I o— . Committee S E Iternat
ICANN Staff i nginoering
= - UITTHLGG!:-DUP Task Force
(IETF)
ASO GNSO CCNSO l
Regionol Internel Commerdal oTLD registries Root Server Security &
Registries & Business System Stability At L_{:rge
ARIN : fi : Advisory
BIPE MC giLD Registries 3 Advisory Advisory Comriitas
LACMIE I5Ps) Committes Committee (ALAC)
APHK Non-Commercial [RSSAC) [SSAC)
AliMIC Registrars

Intellectual Property

Figure 1.5. ICANN’s Organizational Structure [accessed from
http://www.icann.org/en/structure/]

The policy development process is not only coordinated through the review and
advice of its supporting organizations, but Internet users’ participation is also
ensured. The At-Large Advisory Community (ALAC) [52] represents Internet users
and reflects public opinions in ICANN policy development work. ALAC has liaisons
with in all ICANN organizations such as ccNSO and GNSO.

ICANN takes an active part in implementation of IDNs and has published a number
of reports and procedures for the adoption of IDNs and IDN TLDs. These provide a
general framework for the development of registry policies for the implementation
of IDNs. This work is done by developing multiple working groups.

ccNSO has established a number of workgroups which deal with specific issues
including selection and deployment of IDN ccTLDs strings. The IDNC WG of ccNSO
[48] was established to develop and report on viable methods for the introduction
of IDN ccTLDs as the IDN policy is being formulated. The work group published its
final report on 26t June, 2008, which detailed a three stage process for the

From Protocol to Production: Implementing the IDNs

implementation of IDN ccTLDs. Currently a Joint ccNSO/GAC IDN work group is also
functional. Similar work is also being done within GNSO and ALAC.

In addition to the above mentioned committees, there is a President’s Advisory
Committee for IDNs [50] whose purpose is to advise the board and provide a means
to coordinate IDN related developments within and outside ICANN. It is also
designated to identify and provide solutions to implementation and policy related
challenges faced by IDNs in top-level domains.

1.4.4 INTERNET GOVERNANCE FORUM

The Internet Governance Forum (IGF) was established in July 2006 by the UN
Secretary General as an outcome of the second phase of the World Summit on
Information Society (WSIS) [54] held in Tunis in 2005. It is a multi-stakeholder
forum to discuss Internet governance related issues such as public policy, Internet
resource management, communicating with governmental organizations, exchange
of information among various scientific communities, improving access to Internet
in the developing world, identifying emerging issues, maintaining Internet security
and countering cyber terrorism [53].

Three meetings of IGF have been held so far. One of the broad topics of these
meetings has been that of the diversity on the Internet, achieved through
multilingual support. This involves both creating online content in local languages
and introducing multilingual addresses in the DNS so that everyone can access the
Internet in their native language. The importance of internationalized domain
names in this regard has been repeatedly emphasized in all the IGF meetings.

1.4.5 UNICODE CONSORTIUM

Unicode was formed in 1991, and aims to encode all the writing systems of the
world. IDNs use the Unicode encoded character properties and character codes in
the process of defining IDN labels, as discussed in more detail in the next chapter.

1.5 STEP-WISE GUIDE TO IMPLEMENTATION OF IDNs

IDN is an emerging standard. Though discussions on it started more than a decade
ago, it is still being updated and finalized. However, having gone through the
IDNA2003 iteration, and with lessons learnt [12], the revised protocol has promise
for successful deployment. In the current version, in addition to the second or third
level domains, it will also be possible to have new IDN gTLDs and IDN ccTLDs. This
is opening an unchartered name space for the users globally. The following steps
are needed to deploy IDNs. This process includes coordinated work by the user
community, registries and the relevant public organizations (e.g. language
authorities).

1.5.1 CHOICE OF LANGUAGE(S) AND SCRIPT(S) BASED ON THE TARGET USER COMMUNITY

A single script might be used by more than one language. Alternatively, more than
one scripts can be used to write a single language. Therefore, the first step in
developing IDN system for a registry is to identify the language(s) and script(s)

10

From Protocol to Production: Implementing the IDNs

relevant for the target user community. The process in determining these factors
should involve feedback from the relevant community. In case of IDN ccTLDs, this
may also involve constitutional stipulations which give certain languages and scripts
official, national or formal status within a country or a territory.

1.5.2 DETERMINING THE IDN TLD STRING AND VARIANTS

After the language(s) and script(s) have been determined, the next step requires
deciding upon the IDN gTLD or ccTLD. This string should have characters from a
single script and may have other restrictions based on linguistic, cultural, and
technical factors, e.g. the proposed string should not be confusable® with existing
TLDs to avoid user confusion, and should result in ACE encoding shorter than 64
characters.

Due to multiple encoding of characters in Unicode for various reasons!?, and
sometimes similarity of characters within and across scripts, the proposed string
may be confusable with other possible strings. All such strings are referred to as
variants and should be identified in the string finalization process. These variants
should not have independent delegation.

1.5.3 DEVELOPING LANGUAGE/SCRIPT TABLE

Following the first step, it also becomes necessary to determine the characters
within a language and script which will be allowed in an IDN label for registration.
Unicode encodes scripts and generally each script block contains many characters
which are not relevant, either because they are for supporting other languages using
the same script or because they are generally not allowed in domain labels (e.g.
punctuation marks). A language table lists characters of a language and/or script
which are allowed to be registered in IDNs for that language or script. This is an
important resource in the deployment of IDNs regardless of the level of label in the
DNS hierarchy. Entities involved in the registration of IDNs (registries and
registrants) refer to the above table for choosing IDN strings and performing
validation checks. These tables are based on both the IDNA character specification
as given by the protocol and the language level requirements and preferences as
defined by linguistic community.

Additionally, a language table may also contain information about confusingly
similar characters. Registries and registrants can benefit from this information
when performing variant analysis. Chapter 2 discusses these issues in much more
detail.

1.5.4 DEPLOYMENT OF IDNs

After the IDN TLD string and relevant language/script table has been finalized, the
next step involves setting up a registry for the top-level domain. This step is not
relevant if IDNs are being implemented within an existing gTLD or ccTLD. It

® The definition of confusion is still not very clear in the process, but various groups are working on its
formulation.
1% For example, for reasons of backward compatibility.

11

From Protocol to Production: Implementing the IDNs

requires three parallel processes, pertaining to planning, registration and
administration of the new registry supporting the IDNs, as briefly discussed below
and explained in more detail in the following chapters.

1. Registration of TLD with ICANN - The IDN TLD has to be registered with

ICANN first. ICANN has launched Fast Track application process for the
registration of IDN ccTLDs [39]. A new gTLD program is also in progress to
allow registration of IDN gTLDs [57]. This adds a new entry in the IANA root
zone database [41] and the new TLD is delegated to the registry for use. At
the time of application, the language/script table is also submitted, which
will be used by the registry. See chapter 4 for details.

. Domain name policy formulation - A domain name policy lays out the terms

and conditions relating to domain name registration and is part of the
agreement between a registry and a registrant. In addition to updating the
conventional policies relating to dispute resolution, pricing and Whois
information, new policies have to be developed in context of IDN
registrations. These include variant management policies for IDNs. More
details on variant management can be found in Chapter 3.

. Establishment of the registry - After a TLD has been registered in the root, a

registration system would need to be set up. This entails developing a
registration process (and an online registration system), and not only
requires setting up the required servers, but also necessitates developing the
scripts which validate and register (and eventually resolve) IDNs.

With this background on IDNs and the overall process, Chapter 2 provides a
comprehensive analysis of technical issues relating to the preparation of IDN labels.
Following the discussion, Chapter 3 explains the registration and resolution process
for IDNs. Chapter 4 concludes the discussion, with focus of what is expected in the
future for IDNs.

12

From Protocol to Production: Implementing the IDNs

2 PREPARATION OF AN IDN LABEL

A domain name contains multiple levels. Each level is represented by a string, also
called a label. Thus the domain name www.crulp.org contains three labels, www,
crulp and org respectively. In the DNS, labels can only be formed using LDH scheme.
However, it is not clear which characters will be allowed for forming labels in the
context of IDNs. Every language is represented by a character set, which includes a
variety of character types, including consonants, vowels, combining marks, digits,
punctuation marks and special symbols. The character set is represented by a script
block within Unicode standard, e.g. for Lao, Khmer and Sinhala, etc. For scripts
which are used by more than one language, the Unicode standard encodes a
superset of all the characters across these languages within a single script block.
However, not all these characters are relevant for use in IDN labels for a language.
Thus the character set has to be minimized for each language. This is a necessary
first step, before IDNs can be deployed.

Even in the current DNS, the labels are limited to LDH. Other ASCII characters, e.g.
punctuation marks and other symbols, are not allowed as they are not considered
necessary for making domain names. Such category of characters will also be
disallowed for labels in other languages, irrespective of the script. However, there
are also some characters which may be undesirable not from technical perspective
but from a language or cultural perspective. This latter case will vary across scripts
and languages.

Thus, a layered model needs to be adopted for determining which characters from
the entire Unicode script block can be used in IDNs. The lowest (baseline) is the
Protocol layer, which does the core filtering as stipulated by IDNA200x standard
developed by IETF. In addition, there may be characters which are allowed by the
Protocol but the script community may consider them redundant and would thus
filter them for all languages using the script. This has to be done at a separate Script
layer. Additional restrictions may be necessary to limit the characters within a
single language. This will have to be done at a Language layer, through language
specific tables, as determined by the relevant linguistic community. Finally,
additional mapping and conversion may be necessary at Interface layer, to facilitate
users to enter characters in forms not being allowed by any of these former three
layers. This logical division of the validation process into the four layers is
illustrated in Figure 2.1 below!1.

" This model has evolved out of discussions within Arabic Script IDN Working Group (ASIWG).

13

From Protocol to Production: Implementing the IDNs

Unvalidated IDN Label

:

Interface Layer

User

L L
anguage -ayer Requirements

Script Layer

Protocol

Protocol Layer Requirements

,

Validated IDN Label

Figure 2.1. Logical Label Validation Levels

These layers can be grouped into two parts, one specified by the Protocol and the
other specified by the users. The following sections discuss these two parts, with
examples from various languages and scripts?2.

2.1 PROTOCOL - The Baseline

IDNA 200x adopts an inclusion-based approach towards permitting characters in
IDNs. A code-point is assumed to be invalid for IDNs unless it is permitted as a result
of a Unicode property-based rule or included individually through an exception.
When Unicode encodes a character, it associates different properties with it. For
example Unicode defines some General_Category (gc) properties such as
Lowercase_Letter (LI), Uppercase_Letter = (Lu), Titlecase_Letter (Lt),
Nonspacing_ Mark (Mn), Decimal_Number (Nd), Math_Symbol (Sm), Unassigned
(Cn), etc. [13, 20]. IDNA uses these properties to algorithmically calculate a derived
property for each character, which can then be used to determine the validity of that
character in IDNs [14].

2.1.1 CHARACTER-LEVEL SPECIFICATION

IDNAbis categorizes all Unicode code-points in four categories: characters which are
(i) VALID in the Protocol (PVALID), (ii) licensed in a particular CONTEXT (CONTEXT
0/]), (iii) not allowed (DISALLOWED), and (iv) not assigned at this time
(UNASSIGNED) [18]. This categorization is derived from the character properties
[13, 20] enumerated by the Unicode standard, as already discussed.

2 The data presented in these examples have been contributed by the country teams of PAN Localization
project (see www.PANL10n.net for further details).

14

From Protocol to Production: Implementing the IDNs

2.1.1.1 PVALID Characters
Protocol-Valid characters, commonly abbreviated as PVALID, are allowed in IDNs by
the protocol. These contain a variety of character types, including letters, digits,
combining marks, symbols, conjunct characters, etc. All PVALID characters will
pass through the protocol filter.

2.1.1.2 CONTEXT 0O/] Characters

IDNA200x also allows some invisible joining characters, in addition to the visible
characters for proper rendering of various scripts. These include Zero Width Joiner
(ZW], U+200C) and Zero Width Non-Joiner (ZWN], U+200D) characters. Because
they are invisible, they are allowed only in contexts where they are indirectly visible
through the characters in the context (where they change the shape of the adjacent
characters). In other contexts they are not allowed. Thus, these joiner characters
are CONTEXT]. Other characters which require a context but are visisble would be
CONTEXO.

CONTEXTO/] characters need to have an accompanying contextual rule. When such
characters are encountered in a string, the corresponding rule is used to determine
if they will be allowed in the context. If no such rule is defined, they are
DISALLOWED.

The purpose is to restrict the use of CONTEXTO/] characters to certain scripts only.
The actual rules and their descriptions can be found in IDNA200x documents [14].

2.1.1.3 DISALLOWED Characters

Characters that are not permitted to be used in IDNs during registration or look-up
are categorized as DISALLOWED. If any of these characters are encountered in an
IDN label, the label is rejected. This set usually contains characters that are
compatibility equivalent of another character, uppercase forms that can be case-
folded to other characters, symbols and punctuation marks, etc.

2.1.1.4 UNASSIGNED

Finally, UNASSIGNED value indicates that the code-point is reserved in Unicode and
has not been designated. These are not permitted to be used in IDNs. As the
UNASSIGNED codes get assigned in the future versions of Unicode, they will transfer
to the other three categories.

2.1.1.5 Exceptions

As the character properties were not defined for the purpose of IDNs by Unicode,
some characters end up with wrong status when it is derived through the algorithm
using these properties. This disparity is corrected through maintaining a list of
exceptions [25].

15

From Protocol to Production: Implementing the IDNs

General categories of exceptions with some examples!3 from the IDNA200x are
given below:

PVALID -- Would otherwise have been DISALLOWED
00DF; PVALID # LATIN SMALL LETTER SHARP S
03C2; PVALID # GREEK SMALL LETTER FINAL SIGMA
06FE; PVALID # ARABIC SIGN SINDHI POSTPOSITION MEN
OFO0B; PVALID # TIBETAN MARK INTERSYLLABIC TSHEG

CONTEXTO -- Would otherwise have been DISALLOWED
00B7; CONTEXTO # MIDDLE DOT
0375; CONTEXTO # GREEK LOWER NUMERAL SIGN (KERAIA)
05F3; CONTEXTO # HEBREW PUNCTUATION GERESH
30FB; CONTEXTO # KATAKANA MIDDLE DOT

CONTEXTO -- Would otherwise have been PVALID
0660; CONTEXTO # ARABIC-INDIC DIGIT ZERO
0661; CONTEXTO # ARABIC-INDIC DIGIT ONE
06F0; CONTEXTO # EXTENDED ARABIC-INDIC DIGIT ZERO
06F1; CONTEXTO # EXTENDED ARABIC-INDIC DIGIT ONE

DISALLOWED -- Would otherwise have been PVALID
0640; DISALLOWED # ARABIC TATWEEL
07FA; DISALLOWED # NKO LAJANYALAN
302E; DISALLOWED # HANGUL SINGLE DOT TONE MARK
3031; DISALLOWED # VERTICAL KANA REPEAT MARK
303B; DISALLOWED # VERTICAL IDEOGRAPHIC ITERATION MARK

2.1.1.6 Representation Schemes

As has been discussed, DNS only allows for domain names in LDH. However, the
IDN labels being discussed are in Unicode. These Unicode labels (called U-labels)
are converted to ASCII Compatible Encoding (ACE) before they can be transmitted
over the Internet. The converted label is in LDH format (called A-label). IDNA
recognizes both forms.

A U-label is a valid IDNA string that contains one or more Unicode characters and is
in normalization form NFC [16]. It must contain characters from the PVALID set, or
additionally characters which are CONTEXTO/]J in the context the associated rule is
applicable.

An A-Label is an ASCII Compatible Encoding (ACE) of a valid U-label. This
conversion is done using a bootsrting algorithm, which converts the Unicode string

B The examples are taken from http://tools.ietf.org/html/draft-ietf-idnabis-tables-07. See the document
for a complete list.

16

From Protocol to Production: Implementing the IDNs

to a LDH based punycode string [11]. However, to distinguish between a normal
LDH label and an A-label, a prefix “xn--" is appended before the punycode. As the
total string value is limited to 63 characters in the DNS, and four characters are
taken up by the prefix, valid punycode string has to be up to 59 characters.

Punycode is a Bootstring algorithm, with IDNA specific parameters. Bootstring is
chosen for its efficient encoding and short code length. Punycode takes as input a
sequence of one or more Unicode code-points and returns the corresponding ASCII
sequence. It uses two functions for this purpose: (i) ToASCII and (ii) ToUnicode.
ToASCII converts non-LDH Unicode values, and any LDH codes are returned
unaltered. ToUnicode is used to convert back the ASCII sequence to Unicode. Both of
them are reversible functions and can be used to convert from Unicode to punycode
and vice versa uniquely [9]. For example, the ACE label corresponding to (&:s3s53)) is
xn--mgbgjgj9ha8b83g.

ACE-labels are finally inserted to the DNS zones during domain name registration
and looked-up by client-side applications.

2.1.2 MORPHOLOGICAL CONSTRAINTS AND LICENSING

In addition to character level restrictions, the protocol also places morphological or
label level restrictions on the IDN TLD strings. The IDNA protocol restricts some
PVALID characters in certain contexts, or allows certain characters which are not
PVALID in other contexts. Some specific constraints and licensing scenarios are
discussed below.

2.1.2.1 Constraining the Hyphen

Hyphen-Minus (U+002D) is the only ASCII character with Unicode general property
value of Dash_Punctuation (Pd) [13, 20], which is present in the LDH set. All other
punctuation marks and special symbols are disallowed in ASCII domain names.
However, the DNS host name specification [19] does not allow hyphen to be used at
the beginning and end of a label. Also, IDNA uses hyphen-minus in a special ACE
prefix (xn--) used to denote A-labels. This class of labels, also referred to as XN-
Labels in the protocol [29], belong to the Reserved LDH Labels category (R-LDH).
Based on these two reasons, the protocol prohibits the use of hyphen (-) in the third
and fourth positions of a label, as well as at the start and end of a label.

2.1.2.2 Restricting Combining Marks and Combining Characters

A combining mark or a combining character is intended to be positioned around a
base character and can be spacing or non-spacing, i.e. may or may not take space on
baseline [56]. They are used in Latin, Cyrillic, Greek, Arabic and many South Asian
and Southeast Asian scripts. IDNA protocol does not allow an IDN label to start with
combining marks or combining characters.

2.1.2.3 Licensing Contextual Characters

Any CONTEXTO/] character in an IDN label must be accompanied by some context
rule that can be checked against the use of such character. The protocol checks
whether the label satisfies this rule. Without the rule, or successful contextual firing

17

From Protocol to Production: Implementing the IDNs

of the rule, any such characters are not licensed. The following examples illustrate
this process more clearly.

18

i. Join Control Examples

Some scripts, which are cursive in nature, may need to use join controls to
render some characters properly, e.g Zero Width Joiner (U+200D) (to connect
otherwise disconnected characters) or Zero Width Non-Joiner (U+200C) (to
disconnect otherwise connected characters) in different situations. In case they
are needed in an IDN label, the relevant context needs to be identified so that
explicit rules may be extracted to license them. As an example, in Urdu a domain
name for “bookHouse” should be written as two words xS <US, however, as
space is not allowed within domain names, the domain name will appear as
connect nonsense word %S which will not be readable for native speakers of
the language. To ensure that the words are separated (in this cursive script)
without using space, ZWN] has to be inserted between them. Similarly, ZW] is
used in some Indic scripts to allow proper formation of consonantal conjuncts
[21, 24].

The IDNA protocol defines contextual rules for both ZW] and ZWN]. These can be
summarized as follows [25].

ZWN]

1. A ZWN] can be used between two characters belonging to the same
cursive script (e.g. Arabic), so that it breaks a cursive connection between the
two otherwise joining characters.

2. A ZWN] can be used between two characters if the preceding character
(before the ZWN]) is a Virama (for Indic scripts).

ZW]
1. A ZW]J is only used between two characters if the preceding character
(before ZW]J) is a Virama (for Indic scripts).

ii. Arabic Digit Sets

Unicode encodes two sets of Arabic digits and both can be used in Arabic script
IDNs. These are called the Arabic-Indic (U+0660..U+0669) and Extended Arabic-
Indic digits (U+06F0..U+06F9). The Arabic Indic and Extended Arabic Indic digits
are categorized as CONTEXTO characters in IDNAbis, where both cannot be
mixed with each other. Thus, if an Arabic-Indic digit is encountered in the IDN
label, it is checked for the presence of an Extended Arabic-Indic digit and vice-
versa. If any such digit is found then the label is not allowed to be registered. For
example, YY)l (containing U+06F1 U+06F2 U+0663) cannot be registered as
an IDN. For a more detailed discussion, also see Section 2.2.2.2.

From Protocol to Production: Implementing the IDNs

It should be noted here that for CONTEXT] characters, the contextual rule is checked
both at the time of registration and look-up. For CONTEXTO characters, a rule is
only checked during registration [18].

2.1.3 SEMANTIC COLLAPSING

Semantically motivated processing of certain characters in the label is also
sometimes needed. At the protocol level this is to collapse different mechanisms to
encode the same character; a character may be encoded directly and may also be
formed by its composing parts. Two such examples are given in Table 2.1 below.

Table 2.1. Equivalent Characters with Different Unicode Encoding

Script Composed Form Decomposed Form
Tibetan 7 (0F69) M (0F40) + . (OFB5)
Arabic [(0622) | (0627) + & (0653)

2.1.3.1 Normalization

Such letters can be written in decomposed (base letter followed by a non-
spacing/combining mark) or pre-composed form, which are visually equivalent and
would represent the same IDN to the user. However, a composite character and its

decomposed form yield a different punycode. For example, | (U+0627 + U+0653) =

xn--mgb2gl4 butT (U+0622) = xn--hgb. Both look exactly the same but their A-label

equivalents are different. This is a potential source of user confusion. Unicode
provides a Normalization process to address this redundancy [16]. The IDNA
protocol requires that an IDN label must be in Unicode Normalization Form C (NFC).
Normalization tables for some languages, derived from Unicode are given below. It
should be noted that further normalization is stipulated for script blocks by
Unicode, however, the following tables only present a subset of these cases as
required by the language communities.

Table 2.2. Normalization by Unicode for Bengali Language and Script

Character | Unicode | Decomposition Description
Cl 09CB 09C7 09BE | BENAGALI VOWEL SIGN O
CTT 09CC 09C7 09D7 | BENAGLI VOWEL SIGN AU

!4 Converted using Punycode converter at http://www.charset.org/punycode.php.

19

From Protocol to Production: Implementing the IDNs

Table 2.3. Normalization by Unicode for Mongolian Language in Cyrillic Script

Character | Unicode | Decomposition Description
1%} 0439 0438 0306 | CYRILLIC SMALL LETTER SHORT I
é 0451 0435 0308 | CYRILLIC SMALL LETTER IO

Table 2.4. Normalization by Unicode for Nepali Language in Devanagari Script

Character

Unicode

Decomposition

Description

Gl

0929

0928

093C

DEVANAGARI LETTER NNNA

Table 2.5. Normalization by Unicode for Pashto and Urdu Languages in Arabic Script

Character | Unicode | Decomposition Description
T 0622 0627 | 0653 | ARABIC LETTER ALEF WITH MADDA ABOVE
i 0623 0627 | 0654 | ARABIC LETTER ALEF WITH HAMZA ABOVE
9 0624 0648 | 0654 | ARABIC LETTER WAW WITH HAMZA ABOVE
l 0625 0627 | 0655 | ARABIC LETTER ALEF WITH HAMZA BELOW
é 0626 064A | 0654 | ARABIC LETTER YEH WITH HAMZA ABOVE
o 06CO 06D5 | 0654 | ARABIC LETTER HEH WITH HAMZA ABOVE
a 06C2 06C1 | 0654 ARABIC LETTER HEH GOAL WITH HAMZA
ABOVE
S 06D3 06D2 | 0654 ﬁPB{g\BI}SC LETTER YEH BARREE WITH HAMZA

Table 2.6. Normalization by Unicode for Sinhala Language and Script

Character | Unicode | Decomposition Description
f 0DDA 0DD9 | ODCA | SINHALA VOWEL SIGN DIGA KOMBUVA
& 0DDC 0DD9 | ODCE ilé\ILiA;ﬁXgWEL SIGN KOMBUVA HAA
&4 0ppD | 0pDC | opca | AL VOLL SIGN ROMBUVA HAA
o ODDE oDD9 | ODDF ?;TYI;IAA]\JLUAK\II"[(‘)'}‘/XEL SIGN KOMBUVA HA

20

From Protocol to Production: Implementing the IDNs

2.1.4 PRAGMATIC CONSIDERATIONS FOR BACKWARD COMPATIBILITY

For practical reasons, the IDNA protocol maintains a backwards compatible list of
code points. If the derived property (i.e. PVALID, DIALLOWED, UNASSIGNED) of any
existing code-point changes in the future due to a change in the way it is
represented and interpreted by Unicode, or due to a change in the Unicode
properties, the current list will be referred [25].

2.2 USER REQUIREMENTS - Cutting the Protocol to Size

The IDNA protocol provides character level categorization of all Unicode characters
based on their Unicode properties. However, this yields a large numbers of PVALID
characters in a script block all of which may not be relevant for IDNs by a script or a
language. Community feedback can help reduce this set for IDN labels. In addition,
this feedback can also be used to identify other user needs which are inhibited by
the protocol and thus need to be addressed through the application layer, outside
the scope of the IDNA200x process. The following sections discuss such issues.

2.2.1 CHARACTER-LEVEL SPECIFICATION

As has been discussed earlier, Unicode encodes a variety of character types,
including consonants, vowels, combining marks, digits, punctuation marks and
symbols. Many of these symbols are not relevant for IDNs and are DISALLOWED by
the protocol. However, many more such symbols are PVALID but are still redundant
as they are not needed for a particular language or for any of the languages using the
particular script. Thus, additional constraints need to be added on top of the
protocol to contain such cases. This section looks into such cases, with examples
from various script and language communities.

2.2.1.1 SVALID Characters

In many cases, there are characters in a script which are PVALID but are not needed
for any language using that script. Such characters may be blocked at registry level
using a language table. However, instead of repeating the process for each language
using the script, a separate script level analysis could be performed generating a
script level table, which then gets applicable to all languages using it.

The characters which are allowed through this script level analysis can be referred
to as SVALID characters, and can be listed in a script table. This would always be a
sub-set of PVALID characters for the script. To make the table, the whole script
community would need to come together and agree to restrict these characters. The
restriction can be self-binding, with each registry volunteering to adopt the table, or
binding if the participating registries enforce the decision through a collaborative
agreement.

The Arabic Script IDNs Working Group (ASIWG) is a self-organizing group involving
members from language communities that use Arabic script!s, including Arabic,
Persian, Jawi, Urdu, Sindhi and other languages. In 2008, this working group agreed
to disallow additional characters on the script level which are otherwise classified

!> see http://www.arabic-script-domains.org/wiki/Main Page for details.

21

From Protocol to Production: Implementing the IDNs

as PVALID by the protocol. This is based on two observations. First because these
are not used by any of the written languages, and second that their use in IDNs
might cause confusion for users. These characters include the Quranic marks and
stylistic/formatting characters: 0616..0614A, 06D6..06DC, 06DF..06E8, 06EA..06ED.

Similar efforts have been done through JET for CJK languages [30]. However there
are many other scripts which are used by multiple languages and thus need to take
similar measures. Cyrillic, Devanagari and Tibetan are some examples of such
scripts.

2.2.1.2 LVALID Characters

To serve a particular linguistic community, and not all the languages using a script,
an even smaller set of characters could be required. For example, Arabic language
requires a sub-set of SVALID characters from Arabic script block. Persian also
requires a smaller set, but different from that required for Arabic language. A more
interesting case is for Pakistan, which requires support for all the sixty-plus
languages spoken in the country, in a single table as decided by the community.
However, this set is also a sub-set of the SVALID table. Thus, there is need to have
language(s) specific tables which list the Language Valid (LVALID) characters.
LVALID character set should be a sub-set of SVALID set. For example Arabic letter
< (U+067B) is an SVALID character LVALID for Sindhi but not LVALID for Arabic,

Persian or Urdu. Similarly, Cyrillic letter ¢ (U+0471) is a PVALID and SVALID
character but not LVALID for Mongolian language.

As examples, this section provides the list of PVALID characters which are not
LVALID for eight language communities. The languages include Bengali, Dzongkha,
Lao, Khmer, Mongolian, Nepali, Sinhala and Urdu. This can be controlled by putting
an additional filter through language table at the registry level allowing only LVALID
characters.

A more critical situation arises when IDNAbis categorizes some characters as
DISALLOWED in the protocol whereas they are essential to represent a language
and required by the language community. This has to be rectified at this time, by
adding these characters to the exception list of the protocol. Many such characters
have been identified and have been fed into the IDNAbis exception list (see Section
2.1.1.5 above).

Bengali language has many signs which are not needed by the community, as shown
in Table 2.7. In addition there are a few characters which are DISALLOWED, but are
needed by the language community. However, these can be composed from a
sequence of PVALID characters, which can then be used in Bengali IDNs.

22

From Protocol to Production: Implementing the IDNs

Table 2.7. Bengali Characters and Decision by IDNA and Language Community

Unicode Description IDNADbis Language
Range Decision Community
Decision
BENGALI SIGN
0981..0982 CHANDRABINDU.. BENGALI | PVALID NO
SIGN ANUSAVRA
BENGALI SIGN NUKTA..
09BC..09BD BENGALI SIGN AVAGRAHA PVALID NO
BENGALI VOWEL SIGN
09C4 VOCALIC RR PVALID NO
BENGALI LETTER VOCALIC
09EQ..09E3 RR.. BENGALI SIGN VOCALIC LL PVALID NO
BENGALI LETTER RA WITH
MIDDLE DIAGONAL.. BENGALI
09F0..09F1 LETTER RA WITH LOWER PVALID NO
DIAGONAL
BENGALI LETTER RRA..
09DC..09DF BENGALI LETTER YYA DISALLOWED | YES

There are also a large number of characters that are PVALID but not likely to appear
in Dzongkha IDN labels, as shown in Table 2.8. These can be DISALLOWED at the
registry level. Moreover, there are characters that are needed by the Dzongkha
language community but are DISALLOWED by the protocol. However, these can be
composed through other PVALID characters.

There are two characters in Tibetan script which are used to mark the syllabic
boundary in Dzongkha and required to correctly write the words. TIBETAN MARK
INTERSYLLABIC TSHEG (U+0FOB) is required in domain names and TIBETAN
MARK DELIMITER (U+0F0C) is recommended to be normalized to U+0F0B to avoid
ambiguity in domain names. Previously, these two characters were DISALLOWED.
However, through this feedback from the community, in the latest draft of tables
TIBETAN MARK INTERSYLLABIC TSHEG (U+0F0B) is updated to PVALID through
the exception list, whereas TIBETAN MARK DELIMITER (U+0F0C) is still
DISALLOWED and should be normalized in the application layer.

Table 2.8. Dzongkha Characters and Decision by IDNA and Language Community

Unicode Description IDNADbis Language
Range Decision Community
Decision
0F00 # TIBETAN SYALLABLE OM PVALID NO
0F18..0F19 # TIBETAN ASTROLOGICAL SIGN PVALID NO

23

From Protocol to Production: Implementing the IDNs

KHYUD PA.. TIBETAN ASTROLOGICAL
SIGN SDONG TSHUGS

TIBETAN MARK NGAS BZUNG NYI

0F35 7LA PVALID NO

OF37 # TIBETAN MARK NGAS BZUNG SGOR PVALID NO
RTAGS
TIBETAN SIGN YAR TSHES..

OF3E.OF3F TIBETAN SIGN MAR TSHES PVALID NO
TIBETAN SIGN RJES SU NGA RO..

OF7E.OF7F TIBETAN SIGN RNAM BCAD PVALID NO
TIBETAN SIGN NYI ZLA NAA DA..

0F82..0F83 TIBETAN SIGN SNA LDAN PVALID NO
TIBETAN SIGN LCI RTAGS.. TIBETAN

0F86..0F8B SIGN GRU MD RGYINGS PVALID NO

0F96 # TIBETAN SUBJOINED LETTER TTA PVALID NO
TIBETAN SUBJOINED LETTER

0F9A..0F9C TTHA.. TIBETAN SUBJOINED LETTER | PVALID NO
DDA

O0FC6 # TIBETAN SYMBOL PADMA GDAN PVALID NO

0F43 # TIBETAN LETTER GHA DISALLOWED | YES

0F4D # TIBETAN LETTER DDHA DISALLOWED | YES

0F52 # TIBETAN LETTER DHA DISALLOWED | YES

0F57 # TIBETAN LETTER BHA DISALLOWED | YES

OF5C # TIBETAN LETTER DZHA DISALLOWED | YES

0F69 # TIBETAN LETTER KSSA DISALLOWED | YES

0F73 # TIBETAN VOWEL SIGN II DISALLOWED | YES

0F75 # TIBETAN VOWEL SIGN UU DISALLOWED | YES

0F93 # TIBETAN SUBJOINED LETTER GHA | DISALLOWED | YES

0FA2 # TIBETAN SUBJOINED LETTER DHA | DISALLOWED | YES

O0FA7 # TIBETAN SUBJOINED LETTER BHA | DISALLOWED | YES

OFAC # TIBETAN SUBJOINED LETTER DZHA | DISALLOWED | YES

0FB9 # TIBETAN SUBJOINED LETTER KSSA | DISALLOWED | YES

Table 2.9 lists the characters which are not needed in IDN labels by the Khmer
language speakers. These can be restricted at the registry/language table level
above the protocol level. Two Khmer characters KHMER VOWEL INHERENT AQ
(U+17B4) and KHMER VOWEL INHERENT AA (U+17B5) are not wanted by the
language community and have been updated to DISALLOWED in the IDNADbis tables.
There is no character that is DISALLOWED by IDNA and required by the language
speakers.

24

From Protocol to Production: Implementing the IDNs

Table 2.9. Khmer Characters and Decision by IDNA and Language Community

Unicode Description IDNAbis | Language
Range Decision | Community
Decision

179D..179E # KHMER LETTER SHA.. KHMER LETTER SSO | PVALID NO

KHMER INDEPENDENT VOWEL QAQ..

17A3.17A4 KHMER INDEPENDENT VOWEL QAA PVALID NO

17CE # KHMER SIGN KAKABAT PVALID NO

17D1 # KHMER SIGN VIRIAM PVALID NO

17D3 # KHMER SIGN BATHAMASAT PVALID NO
KHMER SIGN AVAKRAHASANYA.. KHMER

17DC..17DD SIGN ATTHACAN PVALID NO

The following table contains Lao characters which are PVALID but not considered
necessary for domain names by Lao language community. The Lao characters shown
in the last two rows of Table 2.10 are needed but DISALLOWED. However they can
be generated by composing other PVALID characters.

Table 2.10. Lao Characters and Decision by IDNA and Language Community

Unicode Description IDNADbis Language
Range Decision Community
Decision
OEAF # LAO ELLIPSIS PVALID NO
0EC6 # LAOKO LA PVALID NO
0EB3 # LAO VOWEL SIGN AM DISALLOWED | YES
OEDC.OEDD ;ﬁ/IgAO LETTER HO NO.. LAO LETTER HO DISALLOWED | YES

In Mongolia, Mongolian language is written using Cyrillic script. As Cyrillic script is
used to represent a number of other languages, there are many Cyrillic characters
that are not used in Mongolian and can be safely restricted from use in Mongolian
IDNs. These are recommended to be removed from the character set at the registry
level using the Mongolian language table. Table 2.11 gives a complete list of these
characters.

25

From Protocol to Production: Implementing the IDNs

Table 2.11. Mongolian Characters and Decision by IDNA and Language Community

Unicode Description IDNADbis Language
Range Decision | Community
Decision

0450 # CYRILLIC SMALL LETTER IE WITH GRAVE PVALID NO

0452..045F | # CYRILLIC SMALL LETTER DJE.. CYRILLIC PVALID NO
SMALL LETTER DZHE

0461 # CYRILLIC SMALL LETTER OMEGA PVALID NO

0463 # CYRILLIC SMALL LETTER YAT PVALID NO

0465 # CYRILLIC SMALL LETTER IOTIFIED E PVALID NO

0467 # CYRILLIC SMALL LETTER LITTLE YUS PVALID NO

0469 # CYRILLIC SMALL LETTER IOTIFIED LITTLE | PVALID NO
YUS

046B # CYRILLIC SMALL LETTER BIG YUS PVALID NO

046D # CYRILLIC SMALL LETTER IOTIFIED BIG YUS | PVALID NO

046F # CYRILLIC SMALL LETTER KSI PVALID NO

0471 # CYRILLIC SMALL LETTER PSI PVALID NO

0473 # CYRILLIC SMALL LETTER FITA PVALID NO

0475 # CYRILLIC SMALL LETTER IZHITSA PVALID NO

0477 # CYRILLIC SMALL LETTER IZHITSA WITH PVALID NO
DOUBLE GRAVE ACCENT

0479 # CYRILLIC SMALL LETTER UK PVALID NO

047B # CYRILLIC SMALL LETTER ROUND OMEGA PVALID NO

047D # CYRILLIC SMALL LETTER OMEGA WTH PVALID NO
TITLO

047F # CYRILLIC SMALL LETTER OT PVALID NO

0481 # CYRILLIC SMALL LETTER KOPPA PVALID NO

0483..0486 | # COMBINING CYRILLIC TITLO.. COMBINING PVALID NO
CYRILLIC PSILI PNEUMATA

048B # CYRILLIC SMALL LETTER SHORT I WITH PVALID NO
TAIL

048D # CYRILLIC SMALL LETTER SEMIDOFT SIGN PVALID NO

048F # CYRILLIC SMALL LETTER ER WITH TICK PVALID NO

0491 # CYRILLIC SMALL LETTER GHE WITH PVALID NO
UPTURN

0493 # CYRILLIC SMALL LETTER GHE WITH PVALID NO
STROKE

0495 # CYRILLIC SMALL LETTER GHE WITH PVALID NO
MIDDLE HOOK

0497 # CYRILLIC SMALL LETTER ZHE WITH PVALID NO
DESCENDER

0499 # CYRILLIC SMALL LETTER ZE WITH PVALID NO

26

From Protocol to Production: Implementing the IDNs

DESCENDER

049B # CYRILLIC SMALL LETTER KA WITH PVALID NO
DESCENDER

049D # CYRILLIC SMALL LETTER KA WITH PVALID NO
VERTICAL STROKE

049F # CYRILLIC SMALL LETTER KA WITH STROKE | PVALID NO

04A1 # CYRILLIC SMALL LETTER BASHKIR KA PVALID NO

04A3 # CYRILLIC SMALL LETTER EN WITH PVALID NO
DESCENDER

04A5 # CYRILLIC SMALL LIGATURE EN GHE PVALID NO

04A7 # CYRILLIC SMALL LETTER PE WITH MIDDLE | PVALID NO
HOOK

04A9 # CYRILLIC SMALL LETTER ABKHASIAN HA PVALID NO

04AB # CYRILLIC SMALL LETTER ES WITH PVALID NO
DESCENDER

04AD # CYRILLIC SMALL LETTER TE WITH PVALID NO
DESCENDER

04AF # CYRILLIC SMALL LETTER STRAIGHT U PVALID NO

04B1 # CYRILLIC SMALL LETTER STRAIGHT U PVALID NO
WITH STROKE

04B3 # CYRILLIC SMALL LETTER HA WITH PVALID NO
DESCENDER

04B5 # CYRILLIC SMALL LIGATURE TE TSE PVALID NO

04B7 # CYRILLIC SMALL LETTER CHE WITH PVALID NO
DESCENDER

04B9 # CYRILLIC SMALL LETTER CHE WITH PVALID NO
VERTICAL STROKE

04BB # CYRILLIC SMALL LETTER SHHA PVALID NO

04BD # CYRILLIC SMALL LETTER ABKHASIAN CHE | PVALID NO

04BF # CYRILLIC SMALL LETTER ABKHASIAN CHE | PVALID NO
WITH DESCENDER

04C2 # CYRILLIC SMALL LETTER ZHE WITH BREVE | PVALID NO

04C4 # CYRILLIC SMALL LETTER KA WITH HOOK PVALID NO

04Ce6 # CYRILLIC SMALL LETTER EL WITH TAIL PVALID NO

04C8 # CYRILLIC SMALL LETTER EN WITH HOOK PVALID NO

04CA # CYRILLIC SMALL LETTER EN WITH TAIL PVALID NO

04CC # CYRILLIC SMALL LETTER KHAKASSIAN CHE | PVALID NO

04CE # CYRILLIC SMALL LETTER EM WITH TAIL PVALID NO

04CF # CYRILLIC SMALL LETTER PALOCHKA PVALID NO

04D1 # CYRILLIC SMALL LETTER A WITH BREVE PVALID NO

04D3 # CYRILLIC SMALL LETTER A WITH PVALID NO
DIAERESIS

04D5 # CYRILLIC SMALL LIGATURE A IE PVALID NO

04D7 # CYRILLIC SMALL LETTER IE WITH BREVE PVALID NO

27

From Protocol to Production: Implementing the IDNs

04D9 # CYRILLIC SMALL LETTER SCHWA PVALID NO

04DB # CYRILLIC SMALL LETTER SCHWA WITH PVALID NO
DIAERESIS

04DD # CYRILLIC SMALL LETTER ZHE WITH PVALID NO
DIAERESIS

04DF # CYRILLIC SMALL LETTER ZE WITH PVALID NO
DIAERESIS

04E1 # CYRILLIC SMALL LETTER ABKHASIAN DZE | PVALID NO

04E3 # CYRILLIC SMALL LETTER I WITH MACRON PVALID NO

04E5 # CYRILLIC SMALL LETTER I WITH DIAERESIS | PVALID NO

04E7 # CYRILLIC SMALL LETTER O WITH PVALID NO
DIAERESIS

04EB # CYRILLIC SMALL LETTER BARRED O WITH | PVALID NO
DIAERESIS

04ED # CYRILLIC SMALL LETTER E WITH PVALID NO
DIAERESIS

04EF # CYRILLIC SMALL LETTER U WITH MACRON | PVALID NO

04F1 # CYRILLIC SMALL LETTER U WITH PVALID NO
DIAERESIS

04F3 # CYRILLIC SMALL LETTER U WITH DOUBLE | PVALID NO
ACCUTE

04F5 # CYRILLIC SMALL LETTER CHE WITH PVALID NO
DIAERESIS

04F7 # CYRILLIC SMALL LETTER GHE WITH PVALID NO
DESCENDER

04F9 #CYRILLIC CAPITAL LETTER YERU WITH PVALID NO
DIAERESIS

04FB # CYRILLIC SMALL LETTER GHE WITH PVALID NO
STROKE AND HOOK

04FD # CYRILLIC SMALL LETTER HA WITH HOOK PVALID NO

04FF # CYRILLIC SMALL LETTER HA WITH STROKE | PVALID NO

Nepali language uses a subset of Devanagari characters. Table 2.12 gives details of
characters that are not used by Nepali language and thus can be filtered using the
language table.

Table 2.12. Nepali Characters and Decision by IDNA and Language Community

Unicode Description IDNAbis Language
Range Decision | Community
Decision
0904 # DEVANAGARI LETTER SHORT A PVALID NO
0911.0912 # DEVANAGARI LETTER CANDRA O.. PVALID NO

DEVANAGARI LETTER SHORT O

28

From Protocol to Production: Implementing the IDNs

0931 # DEVANAGARI LETTER RRA PVALID NO

0934 # DEVANAGARI LETTER LLLA PVALID NO
DEVANAGARI VOWEL SIGN VOCALIC RR..

0944.0946 DEVANAGARI VOWEL SIGN SHORT E PVALID NO

0949 # DEVANAGARI VOWEL SIGN CANDRA O PVALID NO
DEVANAGARI STRESS SIGN UDATTA..

0951.0954 DEVANAGARI ACUTE ACCENT PVALID NO
DEVANAGARI LETTER VOCALIC RR..

0960.0963 DEVANAGARI VOWEL SIGN VOCALIC LL PVALID NO
DEVANAGARI LETTER VOCALIC L.

090C..090E DEVANAGARI LETTER SHORT E PVALID NO
DEVANAGARI SIG NUKTA.. DEVANAGARI

093C..093D SIGN AVAGRAHA PVALID NO

094A # DEVANAGARI VOWEL SIGN SHORT O PVALID NO

097B..097F # DEVANAGARI LETTER GGA.. DEVANAGARI PVALID NO

LETTER BBA

Only one character in Sinhala language in Sri Lanka, which uses its own Sinhala
script, is not supported by the language community and that is also DISALLOWED by
the IDNAbis tables. All remaining characters are required by the language speakers
and are declared as PVALID.

Urdu language uses Arabic script. Feedback from the language community for Urdu
in Pakistan suggests the following changes which should be managed through the
language table.

Table 2.13. Urdu Characters and Decision by IDNA and Language Community

Unicode Description IDNADbis Language
Range Decision | Community
Decision
ARABIC SIGN TAKHALLUS.. ARABIC
0614..0615 SMALL HIGH TAH PVALID NO
0657 # ARABIC INVERTED DAMMA PVALID NO
0659 # ARABIC ZWARAKAY PVALID NO
ARABIC VOWEL SMALL V ABOVE.. ARABIC
065A..065E FATHA WITH TWO DOTS PVALID NO
ARABIC LETTER DOTLESS BEH.. ARABIC
066E..066F LETTER DOTLESS QAF PVALID NO
ARABIC LETTER ALEF WASLA.. ARABIC
0671..0674 LETTER HIGH HAMZA PVALID NO
067A.067D # ARABIC LETTER TTEHEH.. ARABIC PVALID NO

LETTER TEH WITH THREE DOTS ABOVE

29

From Protocol to Production: Implementing the IDNs

DOWN
ARABIC LETTER TEHEH.. ARABIC LETTER

067F.0685 HAH WITH THREE DOTS ABOVE PVALID NO

0687 # ARABIC LETTER TCHEHEH PVALID NO
ARABIC LETTER DAL WITH RING.. ARABIC

0689.0690 LETTER DAL WITH FOUR DOTS ABOVE PVALID NO
ARABIC LETTER REH WITH SMALL V..

0692..0697 ARABIC LETTER REH WITH TWO DOTS PVALID NO
ABOVE
ARABIC LETTER REH WITH FOUR DOTS

0699..06A8 ABOVE.. ARABIC LETTER QAF WITH THREE | PVALID NO
DOTS ABOVE
ARABIC LETTER SWASH KAF.. ARABIC

06AA.06AE LETTER KAF WITH THREE DOTS BELOW PVALID NO
ARABIC LETTER GAF WITH RING.. ARABIC

06B0.06B9 LETTER NOON WITH DOT BELOW PVALID NO
ARABIC LETTER RNOON.. ARABIC LETTER

06BB.06BD NOON WITH THREE DOTS ABOVE PVALID NO
ARABIC LETTER TCHEH WITH DOT

06BF ABOVE PVALID NO
ARABIC LETTER WAW WITH RING..

06C4..06CB ARABIC LETTER VE PVALID NO
ARABIC LETTER YEH WITH TAIL.. ARABIC

06CD.06D1 LETTER YEH WITH THREE DOTS BELOW PVALID NO

06D5.06DC ;I-LEIEIIK\]ABIC LETTER AE.. ARABIC SMALL HIGH PVALID NO
ARABIC SMALL HIGH ROUNDED ZERO..

06DF..06E8 ARABIC SMALL HIGH NOON PVALID NO
ARABIC EMPTY CENTRE LOW STOP..

06EA.06EF ARABIC LETTER REH WITH INVERTED V PVALID NO
ARABIC LETTER SHEEN WITH DOT

06FA..06FC BELOW.. ARABIC LETTER GHAIN WITH DOT | PVALID NO
BELOW

06FF # ARABIC LETTER HEH WITH INVERTED V| PVALID NO

For Urdu, some of these characters are not SVALID for Arabic script and thus can be
filtered through script level tables.

Similar efforts need to be done for other language communities, which aim for
deploying IDN support for their community.

30

From Protocol to Production: Implementing the IDNs

2.2.2 MORPHOLOGICAL CONSTRAINTS

As at the protocol level, there are certain restrictions which the user community
may also require at a morphological or label level, and not just the character level.
These constraints cannot be handled by script or language tables and must be
handled by scripting rules as validation checks during registration process. Again,
such rules should be based on the needs of the language communities.

2.2.2.1 Script Mixing

Some languages require more than one script for complete representation. For
example the Japanese language uses an ideographic writing system where each
word is represented by a symbol. Japanese originally used Chinese ideographs, but
later developed two syllabaries namely Hiragana and Katakana. These are simplified
or stylized versions of certain ideographs. Chinese ideographs (called Kanji) are still
used in combination with Hiragana and Katakana in modern Japanese [27]. In this
case an IDN TLD string will consist of characters drawn from more than one script,
thereby producing a mixed script label. A similar case is presented by the Sinhalese
community. Sinhala and Tamil are both national languages of Sri Lanka, therefore,
the language community may require a Tamil-Sinhala mixed script IDN label [22].

On the contrary, there are other languages that do not require mixing of script in an
IDN label. For example, the Khmer language community only requires Khmer script
in IDNs.

The entities responsible for registration of IDNs need to perform script-mixing
validation checks on IDNs. The following possible cases can be implemented,
through these checks.

=

Only single script characters are allowed (o_)2-32)-555)

2. Single script characters are allowed within a label, but different levels of
labels can be in either this script or in LDH (www.s2_).0org)

3. Free mixing of script characters with LDH is allowed within labels (www.
assabe.comY)

4. Single script characters are allowed within a label, but different levels of

labels can be in different scripts (not limited to Latin + one script)

(Www.gT.o_1)

5. Free mixing of script characters with any other script characters is allowed
within labels. No restriction is applied (www.2>l -abc-at.newTLD)

The IDNA200x protocol allows for all these possibilities [18]. However, mixing of
scripts should generally not be allowed. Normally the first case is applicable, though
the second case may also be applicable if the existing gTLDs and ccTLDs start
supporting IDN labels within their domain space. The third case is normally not
needed within a language, though there may be specific needs especially for digits
(see next section). The fourth and fifth cases above are quite rare, though there are
authentic cases, e.g. as discussed for Japanese earlier.

31

From Protocol to Production: Implementing the IDNs

Allowing free mixing of scripts can also cause some usability issues. In such cases it
becomes more important to restrict mixing. This is especially true for scripts

containing similar looking or confusable characters. For instance Cyrillic letter a

(U+04D3) and Latin letter a (U+00E4) are visually identical, but produce different A-
labels. Thus, mixing of Latin and Cyrillic characters might lead to the possibility of
having two exactly similar IDN pointing to two different locations.

ICANN does not encourage mixing of scripts in an IDN TLD unless there is legitimate
need. “Exceptions to this guideline are permissible for languages with established
orthographies and conventions that require the commingled use of multiple scripts”
[40].

2.2.2.2 Digit Mixing

DNS permits the use of numerals or digits in a domain name in the LDH schemes.
However, most scripts also have their own digit sets. This creates the following
possible cases for digit mixing.

Only local script digits are used

Only Latin digits are used

Local script digits and Latin digits are allowed at different levels

Local script and Latin digits are allowed to be mixed within a label

Digits from other scripts are allowed across levels in addition to this script
and ASCII digits

Digits from other scripts are allowed to be mixed within labels at the same
level

v Wi

o

Language communities could decide between these options. Many languages would
prefer the first option. However, some scripts do not have digits or use Latin digits
even though local digits are available and thus may choose the second option.
Where scripts are mixed across levels, digits may also be mixed across levels.
However, the fourth option would be very rare. In this case as well, as in the case of
script mixing, there are some legitimate needs. For example, Jawi language (spoken
in Malaysia and written with Arabic script) reduplicates® to create words. The
reduplicated word rama-rama means a butterfly. However, in Jawi instead of
writing it as Wl_ll, it is written as YW, (i.e. instead of rama-rama, written as rama2).
This is the only context and the only Arabic digit used in Jawi. Otherwise, Jawi uses
Latin digits for numbers. Thus, if one had to write “butterfly10” in Jawi, one would
need to write 10YW!, which would require mixing digits within a labell?. Fifth and
sixth options are possible but there are no known examples where such possibilities
are needed.

16 Reduplication is a linguistic phenomenon, in which part or whole word in a language is repeated to
create new words, e.g. see http://en.wikipedia.org/wiki/Reduplication for examples from different
languages.

7 Example shared by MYNIC staff during ASIWG meetings.

32

From Protocol to Production: Implementing the IDNs

Whatever the language community decides will have to be implemented through
registry level constraints.

Arabic script generally presents another interesting example in this regard. Unicode
encodes two sets of digits sets in the Arabic script block, as shown in Table 2.14.
The two sets are only different in shape for the digits 4, 5, 6 and 7. Other digits have
same shape. In this context, an additional constraint needs to be put to ensure that
the two digits within the script table are also not mixed. For Arabic, this has been
handled by putting appropriate rule in the Bidi document of the protocol [26].

Table 2.14. ASCII, Arabic-Indic and Extended Arabic-Indic Digits

EXTENDED
ASCII ARABIC-INDIC ARABIC-INDIC

0 0300 ' 0660 . 06F0
1 0301) 0661) 06F1
2 0302 Y 0662 Y 06F2
3 0303 v 0663 v 06F3
4 0304 ¢ 0664 ¥ 06F4
5 0305 ° 0665 o 06F5
6 0306 1 0666 7 06F6
7 0307 v 0667 v 06F7
8 0308 A 0668 A 06F8
9 0309 A 0669 A 06F9

2.2.3 SEMANTIC DISAMBIGUATION

Section 2.1.3 discusses semantic disambiguation as achieved by the IDNA protocol
through Unicode NFC. Beyond this normalization, IDNA does not include any
mapping or case-folding steps as part of the standard. If required, these have to be
performed at the registry or application level. This section describes steps that
should be taken to distinguish similar looking IDN labels at the language/script
level.

2.2.3.1 Extended Normalization

Unicode does not define normalization for all characters. This is especially true of
composite forms that can be created using a base character followed by a combining
mark. Equivalence of such characters has to be defined at the script level. If any such
character is encountered in an IDN TLD, the corresponding additional script level
normalization has to be performed.

As an example, 5 (U+06C6) can be formed by composing s (U+0648) with <:
(U+065A). However, even though both sequences give exactly the same character
visually, they are not defined as equivalent in Unicode and would not be normalized
through the protocol defined process. Same is the case with Khmer Vowel Sign 00

33

From Protocol to Production: Implementing the IDNs

[<71 (U+17C4) and Khmer Vowel Sign OE 1o (U+17BE). Both have equivalent

decomposed forms, but Unicode does not provide a mapping between the
decomposed and composed forms.

Examples from some of these languages and scripts are given in the tables below.

Table 2.15. Khmer Script Characters Requiring Extended Normalization

Character

Unicode | Decomposed Form Description
KHMER VOWEL
0 17C4 17C1 17B6 SIGN 00
o KHMER VOWEL
P 17BE 17C1 17B8 SIGN OE

Table 2.16. Arabic Script Characters Requiring Extended Normalization

Character | Unicode Decomposed Form Description
Z ARABIC LETTER YEH
s
0626 0649 0654 WITH HAMZA ABOVE
¢ ARABIC LETTER YEH
&
0626 o6CC 0654 WITH HAMZA ABOVE
5 ARABIC LETTER HEH
06CO 0647 0654 WITH YEH ABOVE
) ARABIC LETTER HEH
° 06C2 0647 0654 GOAL WITH HAMZA
ABOVE
: ARABIC LETTER HAH
T
0681 062D 0654 WITH HAMZA ABOVE
‘ ARABIC LETTER REH
D)
076C 0631 0654 WITH HAMZA ABOVE
& ARABIC LETTER HIGH
0678 0649 0674 HAMZA YEH
3 ARABIC LETTER HIGH
s
0678 06CC 0674 HAMZA YEH
3 06C7 0648 064F ARABIC LETTER U
3 06C8 0648 0670 ARABIC LETTER YU
3 ARABIC LETTER WAW
3
06CF 0648 06EC WITH DOT ABOVE
d 063A 0639 06EC ARABIC LETTER GHAIN
o= 0636 0635 06EC ARABIC LETTER DAD

34

From Protocol to Production: Implementing the IDNs

< 062E 062D 06EC ARABIC LETTER KHAH
e | o | e | MECETEUGH
: 0630 062F 06EC ARABIC LETTER THAL
) 0632 0631 06EC ARABIC LETTER ZAIN
J ARABIC LETTER LAM
06B6 0644 06EC WITH DOT ABOVE
: ARABIC LETTER QAF
€]
06A7 066F 06EC WITH DOT ABOVE
= 0641 06A1 06EC ARABIC LETTER FEH
C 0646 06BA 06EC ARABIC LETTER NOON
B ARABIC LETTER KAF
06AC 0643 06EC WITH DOT ABOVE
s ARABIC LETTER KEHEH
0762 06A9 06EC WITH DOT ABOVE
. ARABIC LETTER MEEM
a 0765 0645 06EC WITH DOT ABOVE
ARABIC LETTER HAH
c 0772 062D 0615 WITH SMALL ARABIC
LETTER TAH ABOVE
= 0679 066E 0615 ARABIC LETTER TTEH
) 0691 0631 0615 ARABIC LETTER RREH
: 0688 062F 0615 ARABIC LETTER DDAL
ARABIC LETTER REH
WITH SMALL ARABIC
2
0771 0697 0615 LETTER TAH AND TWO
DOTS
o[ww | o | oas | mpciETER
5 ARABIC DAL WITH DOT
0688 068A 0615 BELOW AND SMALL TAH
C 06BB 06BA 0615 ARABIC LETTER RNOON
8 ARABIC LETTER FARSI
063D bece 0658 YEH WITH INVERTED V
5 06C9 0648 0esg | ARABIC LE’I\‘(’I{‘JER KIRGHIZ
P 077E 0633 0658 ARABIC LETTER SEEN

WITH INVERTED V

From Protocol to Production: Implementing the IDNs

3 ARABIC LETTER DAL
)
O6EE 062F 065B WITH INVERTED V
, ARABIC LETTER REH
i O6EF 0631 065B WITH INVERTED V
5 ARABIC LETTER HEH
06FF 06BE 0658 WITH INVERTED V
5 ARABIC LETTER HEH
O6FF 0647 065B WITH INVERTED V
. ARABIC LETTER FARSI
& 063F 06CC 06DB YEH WITH THREE DOTS
ABOVE
. ARABIC LETTER FARSI
é 063F 0649 06DB YEH WITH THREE DOTS
ABOVE
o 0634 0633 06DB ARABIC LETTER SHEEN
ARABIC LETTER SEEN
i WITH THREE DOTS
069¢ 0698 06DB BELOW AND THREE DOTS
ABOVE
= 062B 066E 06DB ARABIC LETTER THEH
> ARABIC LETTER HAH
«
0685 062D 06DB WITH THREE DOTS ABOVE
J 0698 0631 06DB ARABIC LETTER JEH
> 068E 062F 06DB ARABIC LETTER DUL
¢ ARABIC LETTER AIN WITH
06A0 0639 06DB THREE DOTS ABOVE
= 06A4 06A1 06DB ARABIC LETTER VEH
3 ARABIC LETTER QAF
S
. 06A8 066F 06DB WITH THREE DOTS ABOVE
- 06AD 0643 06DB ARABIC LETTER NG
X ARABIC LETTER GAF
06B4 06AF 06DB WITH THREE DOTS ABOVE
J ARABIC LETTER LAM
06B7 0644 06DB WITH THREE DOTS ABOVE
: ARABIC LETTER NOON
o
06BD 06BA 06DB WITH THREE DOTS ABOVE
¥ ARABIC LETTER KEHEH
0763 06A9 06DB WITH THREE DOTS ABOVE
= 0628 066E 065C ARABIC LETTER BEH

36

From Protocol to Production: Implementing the IDNs

: ARABIC DAL WITH DOT
068A 062F 065C BELOW
: ARABIC LETTER DAL
3 068B 0688 065C WITH DOT BELOW AND
SMALL TAH
ARABIC LETTER REH
2
0694 0631 065C WITH DOT BELOW
5 ARABIC LETTER FEH
06A3 0641 065C WITH DOT BELOW
, ARABIC LETTER NOON
@]
06B9 0646 065C WITH DOT BELOW
: ARABIC LETTER DAD
U=
06FB 0636 065C WITH DOT BELOW
ARABIC LETTER BEH
& 0751 062B 065C WITH DOT BELOW AND
THREE DOTS ABOVE
ARABIC LETTER MEEM
P 0766 0645 065C WITH DOT BELOW
p ARABIC LETTER YEH
06CE 06CC 065A WITH SMALL V
V ARABIC LETTER YEH
&
06CE 0649 065A WITH SMALL V
V ARABIC LETTER BEH
J
0756 066E 065A WITH SMALL V
: s e U ARABIC LETTER NOON

WITH SMALL V

2.2.3.2 Variant Mapping

Apart from pre-composed characters, there are some visually confusable characters
within a script or a language. Mapping has to be defined at the appropriate level to
maintain equivalence of such characters and reduce user confusion and
susceptibility to phishing.

As an example, in Arabic script, for instance, each character can take one of four
visual forms depending upon its context in a word. These are (i) Initial, (ii) Medial,
(iii) Final and (iv) Isolated forms. Characters that look similar in any of the four
forms are said to be visually confusable. For e.g. Arabic script provides two versions
for the letter Kaf; an Arabic version < (U+0643) and a Persian version < (U+06A9).
Both look exactly the same in their initial and medial positions, e.g. JUS vs.

S (kitab, ‘book’).

As discussed in the section of Script Mixing, variant mapping may also be needed
across scripts, where a script may have similar looking letters to LDH. Moreover, a
letter in a script can also be similar to another script allowed within the label, e.g.

Cyrillic letter & (U+04D3) and Latin letter 4 (U+00E4) are visually identical. This

37

From Protocol to Production: Implementing the IDNs

similarity sometimes is not restricted to visual similarity. For example, in the case
of Chinese and Simplified Chinese, two ideographs may be visually different but may
still be confusingly similar for the user.

Finally, mapping may also be required at language level, as two characters may be
distinct at script level, but may be confusingly similar at language level. An example
is that of Arabic Kaf < (U+06A9) and Arabic Swash Kaf & (U+06AA). In Sindhi, the
two are distinct letters but in Urdu the latter would be considered stylistic variation
of the former character. Such decisions should be made by the relevant linguistic
community.

Table 2.17. Urdu Language Characters Requiring Variant Mapping!8

Character | Unicode | Mapped To | Unicode
& 0626 e 0621
6 0629 A 06C3
< 0643 S 06A9
> 0647] 06C1
S 0649 S 06CC
¢ 064A S 06CC
5 06CO A 06C2
S 06AA < 06A9

2.2.3.3 Script Level Case Folding

Among other properties, Unicode defines Case as a normative character property in
certain scripts such as Latin, Greek, Cyrillic, Armenian, etc. [55]. The three case
forms for characters in Unicode are Uppercase, Lowercase and Titlecase. Case
folding is the process that maps a character in one case to its canonical form in
another case, so that caseless comparisons can be performed. In IDNs, case-folding
is required to establish equivalence between the two characters which convey the
same meaning. Uppercase characters are not permitted to be used in IDNs. If any
uppercase characters are encountered, they must be case-folded to lower case. An
informative reference to some case-mapping possibilities is the mappings document
[17]. These have to be done at application level, and also re-checked at the registry,
instead of rejecting strings which may contain upper case letters. There can be some
exceptions as well, where such mapping is ambiguous, e.g. Sigma and Eszett.
Language community needs to decide the course of action in such cases.

2.2.4 PRAGMATIC CONSIDERATIONS - USER CULTURAL CONVENTIONS AND PREFERENCES

In addition to encoding issues or visual similarity, there are additional limitations
imposed by various ad hoc factors. These may include cultural conventions,
localization support and similar reasons.

'® Due to shape similarity in at least one of the four cursive forms.

38

From Protocol to Production: Implementing the IDNs

2.2.4.1 Digits

Choice of digits has been discussed in the section on Digit Mixing earlier. However it
must be reiterated that the even with a script having its own set of digits, a language
community may arbitrarily decide to use a different set of digits. Such decisions are
culturally driven and based on a variety of pragmatic and socio-linguistic reasons.

2.2.4.2 Label Separators

Labels in a domain name are separated using a label separator or delimiter. Dot “.” is
the only permissible delimiter “on the wire”. However, certain languages use
different delimiters to mark the end of a label. Preferred label separator for use in
IDNs needs to be identified so that it can be mapped onto dot during pre-processing
in the application. The document on mapping [17] in the IDNA200x standard
suggests such possibility. As an example, Dzongkha language community suggests

using the Rnam Bcad ¢ (U+0F7F) as label separator. Urdu community uses Arabic

Full Stop (U+06D4) generally, but has decided to switch to the dot for Internet
domain names. This is similar to Nepali community preferring dot over the

conventional Devanagari delimiter | (U+0964).

2.2.4.3 Honorifics and Other Symbols

Arabic script contains some non-spacing combining characters that are used with
names of certain personalities as a symbol of respect. These are called honorifics
and their use is part of the cultural and religious conventions. Thus they have been
included for IDNs. However, due to the potential spoofing threats imposed by
combining characters in general, on the recommendation of ASIWG, the Urdu
language community has agreed to block them till a time when technology has
matured to a level where these combining marks are not confusingly rendered?®.

2.2.4.4 Technology Maturity and Localization Support

There is a varying degree of support of different scripts on different technology
platforms. Input methods, locales, fonts, rendering engines and other tools are still
not mature for many scripts. This means that even if all the relevant homework is
done for IDN deployment, the users still may not be able to benefit from their use.
For example, ASIWG recommends restricting the use of combining marks in Arabic
script at the script level until the technology advances to a point when these marks
can be clearly displayed in address bars within web browsers, etc.

It should also be noted that while some native language characters are encoded in
Unicode, they are not always supported by existing fonts for the language/script.
Thus some characters of an IDN label or part of the label might not be displayed due
to font issues. For example Arabic characters 063C..063F are not supported in the

19 At this time, the address bar in web browsers is optimized for LDH characters, and is too short in height
to display combining marks properly and would need to be re-engineered for properly displaying IDNs for
many scripts.

39

From Protocol to Production: Implementing the IDNs

font being used in the current system. These are PVALID and SVALID characters but
appear as boxes: [], and thus would be difficult to use within domain names.

Many times when the support is available, keyboards are not available to input the
text. For example it may not be easily possible to enter Arabic text for a person
traveling through China, or to enter Greek text from Canada. There could also be
cases that local language keyboards are not available even in the resident country of
the language. Languages have found quite unique solutions to deal with such
problems, Chinese Pinyin system being a good example, which allows users to use a
Latin keyboard to enter Chinese characters.

40

From Protocol to Production: Implementing the IDNs

3 RELAYING THE IDN LABELS “ON THE WIRE”

As discussed earlier, IDNs add a layer on top of the existing DNS. This layer inputs
U-labels and converts them to A-labels, the latter being in the same format as labels
in the existing DNS. Thus, the data being sent through the DNS, i.e. on the wire,
remains unchanged. This has already been illustrated in Figure 1.3. The filtering
and mapping role of each layer has been discussed in Chapter 2. This chapter
focuses on the process needed for registering and resolving the IDNs.

3.1 PHYSICAL MAPPING OF THE LOGICAL LAYERS

The implementation of IDNs involves application, language, script and protocol level
processing. This processing has to be done redundantly at three places: (i) client-
end applications, (ii) registry and, (iii) root, for correctly registering and resolving a
request. This section describes how these checks are distributed across different
places during registration and resolution, as summarized in Figure 3.1.

Unvalidated IDN Label

Resolution Stage { Registration

Checks at Client Stage Checks Interface Checks
Application at Registry

User
. L Check
Optional anguage Lhecks Requirements

Resolution Stage |

Checi\s a;fi;"i[?nrf " Resolution Script Checks
PP ° _ Stage Checks Protocol
Resolution Stage at Registry rotoco
Checks at Root{ Protocol Checks Requirements
(only TLD label) i

Validated IDN Label

Figure 3.1. Distribution of Label Validation Application, Registry and Root during
Registration and Resolution of IDNs

3.2 ROLE OF CLIENT APPLICATION

Client application is the web-browser, email client or any other program the user is
using to generate a request to access online resources through DNS, e.g. to access a
web page by clicking on a link. Client application does not play any significant role
in registering a domain name, as this is normally done through submitting
paperwork or through an online interface directly provided by the registry.

41

From Protocol to Production: Implementing the IDNs

3.2.1 RESOLUTION PROCESS

Client application plays a significant role at the look-up time, for example, when the
user submits a URI request through the web-browser. The application layer takes
two input parameters: (i) an IDN (containing one or more Unicode code-points) to
be looked-up, and (ii) a set of rules to process the IDN (which will have to be
integrated within the application by the application developer). It is responsible for
converting user input to A-label. This requires at least the following steps:

1. Ascertain the language/script of the input through user input or otherwise

2. Convert input to Unicode, in case another encoding is being used

3. Separate each label, using the label separator. This label separator may be
the dot (U+002E) or some other language/script specific character (see
Section 2.2.4.2)

Case fold characters, if applicable (see Section 2.2.3.3)

Normalize each label to Unicode NFC form (see Section 2.1.3.1)

Optionally perform protocol level analysis

Optionally perform language and script level analyses

Convert to A-label

© N

Any mappings done in the process are not part of the IDNA 200x protocol and may
vary with linguistic community. The protocol does provide an informative
document for mapping [17], but specific needs have to be documented by the
community itself and passed on to the application developers. This may include
additional information on label separators, label display order specifications,
guidelines on input method to U-label conversion and similar mechanisms, not part
of the language and script tables.

The application may additionally perform protocol, script and language level checks.
This would entail loading and running rules and tables. Though protocol level
tables can be fed in, such tables would need to be updated with each version of
Unicode?0. Similarly, the language level tables may also be needed if script and
language level processing is to be done. The relevant application can either directly
ask the user to configure this information or alternatively pick it up from the locale.
This mechanism will also eventually evolve. No guidelines for this process are
provided by the IDNA standard?!.

How the A-label is displayed to the user when a query is returned is also the job of
the application. Client application (web browsers, email clients, etc.) have to
properly convert the A-label to U-label and do any reverse mappings to meet the

% A more stable solution would be to have a web-service which performs the check and is automatically
updated with Unicode versions. Such a service could be used by the application layer, and provided by
the relevant organizations, e.g. Unicode or ICANN, etc.

*! In addition to the existing information, locale may eventually also be extended to contain community
preferences for IDNs. This is one way to making the language tables available across all applications.

42

From Protocol to Production: Implementing the IDNs

expectations of the user. This may require reversing some of the steps listed above,
e.g. converting the dot back to the label separator used by the language.

3.3 ROLE OF REGISTRY

A registry supporting internationalized labels is required to perform appropriate
checks both at the registration and the look-up time. The registry must perform
protocol level checks, while also taking into account language-tables (including
variant-tables) for validation of labels. Language-specific mappings and restrictions
are applied on the top of the protocol level rules for each character. Furthermore, a
registry might prohibit use of mixed-script labels and digit mixing as determined by
the community, to prevent confusability. Various possible decisions relevant at
registry level are discussed in the previous chapter and need to be applied at both
registration and resolution levels. In the registration process, as the user is directly
interacting with the registry interface and there is no application layer, the registry
also needs to do application level processing. This is illustrated in Figure 3.2.

In addition to performing different verification checks, the registry also has to
implement policy finalized to handle variants. Various approaches for variant
handling are discussed in subsequent sections. Finally, the registry would also need
to implement other policies discussed later in this section.

Registry
| 1
| Verify IDN |
| (Application/ i
| Protocol/ 7 '
| . one !
) ! Language/ Script) !
Submits IDN ! checks) File \
for Registration : i
Registrant > i !
< ! Activate |
i Generate in zone |
Registered ! Variants |
Bundled/Single ! !
IDN ! i !
i Bundle/Block gegi;try i
- according to — atabase !
i Policy Keep :
i record i

Figure 3.2. Block Diagram Showing IDN Registration Process

3.3.1 REGISTRATION PROCESS
To start the registration process, a registrant submits an IDN for registration. This
might be done by filling out an online form. In this case, the registry providing the

43

From Protocol to Production: Implementing the IDNs

service is responsible for handling application level checks on the IDN. These
include checking encoding of the internationalized string, separating labels based on
local label separator and normalizing the string to Unicode NFC. The actual
registration checks are performed on the putative U-label. Figure 3.3 depicts a
possible way of registry level verification before a U-label is converted to an A-label
and placed in the zone. This step-by-step process is detailed below.

1.

When a domain name is submitted by the registrant for registration (through
a web interface or otherwise), the application layer of the registration service
checks the encoding of the label and notifies the applicant to submit a
Unicode string if it is not in Unicode?z.

Labels in the IDN string are separated using the label separator. There may
be language/script specific label separators which may be used.

Each label is checked for normalization, and converted to NFC if required.

A label containing any DISALLOWED and/or UNASSIGNED characters is
rejected.

Protocol level label validation checks are performed. Any label that contains
any of the following is rejected.

a. Hyphen in third and fourth positions.
Leading combining mark.

c. Context character for which no rule is defined. This includes both the
CONTEXTO/] characters [14].

d. Context character for which a rule is found and the context does not
agree with that rule.

e. Labels containing mixed direction characters violating bidirectional
rules as given in the IDNAbis-Bidi document [15].

If a label passes the above tests, it is a U-label. This label can be subjected to
further registry level restrictions which are a localized function of the
registry. The following registry level tests may be performed. Language
tables and rules are input to this step of the registration process.

a. Any additional characters that are prohibited by the registry are
checked. Labels containing all such characters will be rejected by the
registry.

b. If registry does not allow script mixing, a label found with mixed
scripts (i.e. abc<!) is rejected. Same is done for digit mixing.

?2 Or alternatively a service may convert the sting to Unicode, for communities which are still
predominantly using non-Unicode fonts.

44

From Protocol to Production: Implementing the IDNs

c. Variants are generated at this step of the process using language
variant tables. All labels generated are either bundled with the
original label (and activated in the zone), or blocked from registration
by any other registrants. This depends on the registry policy. An entry
in registry database is placed for any bundled labels.

d. The resulting U-label(s) are converted to punycode.

e. The label(s) should fulfill the DNS length requirements for ASCII
labels (which is 59 bytes or less).

f. ACE-prefix (xn--) is appended to the result of punycode.

The resulting A-label(s) are placed in the registry name-server’s zone
file.

7. If the label can be registered as a valid U-label, the registrant has to provide
contact information to complete the registration process. This includes
providing details such as name, email, administrative contact, administrative
address, billing contact and technical contact for the domain name. This
information is also placed in the Whois database of the registry for future
public access and queries.

This process is illustrated in the figures below. The figures have been divided into
three portions, Figure 3.3 (a) show the Application layer processing, (b) shows the
protocol layer processing, and finally (c) details the language and script level
processing.

45

From Protocol to Production: Implementing the IDNs

Registrant

Submit IDN request

Normalize_to_NFC

:

Convert to A-Label

1 1
1 1
1 1
' » Check Encoding '
| |
1 1
1 1
1 1
1 1
1 1
1 1
' Notify applicant to !
! | submitin Unicode/ «No !
I | Convert to Unicode !
| |
1 1
: Yes '
1 h 4 1
! Language specific label !
! Separate_Labels separator from language !
! table !
1 1
1 1
1 1
| 4 :
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Putative A-label

(a)

46

From Protocol to Production: Implementing the IDNs

A-Label from application
layer (see Fig. 3.3(a))

!

Covert to U-Label

\
Putative U-Label

Check_DISALOWED_UNA
SSIGNED_characters

—Disallowed/Unassigned found—» Reject Registration €—

v

A

Check_Hyphen_Position

Hyphen in third and fourth position—«

v

Check_Leading_Combing_
Character

Leading combining mark found

v

Context Rules

Check_Contextual_Charact

Check if rule exists—— Table

er
‘V Rule not found———,
Apply_Context_Rule
‘V Rule context not valid——

Check_Bidi_Rules

Bidi rule violated

Language/Script level
Processing
(details in Fig. 3.3(c))

\
Language/Script Valid
U-Label
h 4

Length>59 bytes

Convert_to_Punycode

;

Check_Length

!

Add_ACE_Prefix (xn--)

A-Label

Add_to_DNS_Zone (as per
variant handling policy)

47

From Protocol to Production: Implementing the IDNs

Putative U-Label from
protocol layer

A
Language/
Check_LVALID_Characters Script Table

~_

A

4

Check_SVALID_Characters |«

A

Apply_Script/
Digit_Mixing_Rules

Registry
Policy

Generate_Variants <

Language/Script Valid
U-Label(s)

(c)

Figure 3.3. Registration of IDNs: (a) Application layer processing,
(b) Protocol level processing, and (c) Language/Script level processing

3.3.2 REGISTRATION PoLicy

Some issues relating to IDNs have to be resolved by the registries through policy
making; the protocol does not layout any specific rules or constraints for them. One
such issue relates to script/digits mixing. At present, ICANN does not allow the use
of mixed-script IDN labels, as documented in the IDNs implementation guidelines
[40]. Possible exceptions to this case are languages that require comingled use of
scripts such as the CJK languages.

Another question that has to be addressed through policy formulation relates to
variant management. As discussed in the previous chapter, languages and scripts
contain several similar looking characters that are a source of visual confusion.
Some of these characters look exactly the same, while other may be slightly
different. Such characters, also called confusable characters, create a phishing
possibility when used in IDNs. Typically, a registrant of IDNs would certainly want
all similar looking labels to point to the same Internet resource, to avoid user
confusion. For e.g. in Arabic the characters < (U+06A9) and < (U+0643) are exact
shape in their initial and medial forms. Consequently, the word obwSh (Pakistan)
with either character will look exactly the same. There are other types of variants,
based on shape and/or meaning similarity, even when the match is not exact.

48

From Protocol to Production: Implementing the IDNs

There are a number of issues associated with how variants are managed by the
registry, including allocation, delegation, billing and dispute resolution. A registry
receiving variant allocation requests must maintain a variant table in addition to the
language table. Alternatively, information about characters having variants can be
stored in the same table. The following section lists possible variant management
mechanisms that can be implemented by a registry.

3.3.2.1 Handling Redundancy

When a registry receives a label for registration that contains characters for which
variants/equivalents exist, it is up to the registry to do one of the following. A
variant management policy must be developed by the registry to reflect its decisions
in this regard.

i. Single registration

Requested label is registered in the zone file as single entity. This means that no
variant names are registered (placed in the zone file), or blocked for registration
in the future, or reserved for the applicant. Thus, any other registrant can
register the variant domain name separately from the original base label. This is
not a preferred method as it would create user confusion and possible phishing
problems.

ii. Bundling

Requested label and its preferred variants are allocated to the same registrant in
a bundle. The registrant may receive two or more delegations for the same or
additional price. Bundling is also required for maintaining backwards
compatibility with IDNA2003. Query for a bundled domain name variant will
result in a successful look-up.

iii. Blocking

The requested label is registered and delegated to the registrant, while all other
variants are blocked for registration. This means that the variant labels do not
appear in the zone file and can never be registered. A blocked variant domain
name will result in a negative response to a DNS query. Though user experience
is not as good as bundling, but security issues are addressed.

iv. Reservation

The requested label is registered and delegated. Preferred variants are reserved
and all other variants are blocked from registration. Reservation implies that
only the registrant can release the reservation and register the domain name in
question. This may be the preferred way if incremental pricing is to be
instituted.

3.3.2.2 Dispute Resolution

A uniform dispute resolution policy (UDRP) defines how the registry settles
disputes when two simultaneous requests for registration of the same domain name
are received. In case of IDNs, it also includes how disputes over variant domain

49

From Protocol to Production: Implementing the IDNs

names are resolved. Similar measures need to be in place for trademark protection.
Sunrise periods are normally used by registries implementing dispute resolution for
trademark handling.

3.3.2.3 Whois?3

A Whois service is provided by most registries to make information about the
registered domain names publically available. This wusually contains the
administrative and technical contacts of a domain and the details of its name-
servers. The Whois service is used to query about a specific domain and may also be
used to check the availability of domain names. Currently the Whois servers store
information as plain ASCII text. This may also need to be localized in case of IDNs.

Moreover, a registry might need to keep multiple records for the same registrant if
variants are also allocated and/or delegated. Since a Whois server is usually queried
for the availability of a domain name, this information must be available to notify
the potential registrant of any reserved and/or blocked variants.

3.3.2.4 Pricing

The IDN registration policy must also detail how the registrant will be billed,
according to its business model. This is especially important for variant
management. The registry has to decide whether the bundled and/or reserved
variant package comes at an extra price or allocated as a unit.

3.3.2.5 Security Considerations

Finally, a registry implementing IDNs needs to address security concerns associated
with visually confusable characters. A registry has necessary data available about
alternative registered names, and can process that information efficiently at the
time of registration, using policies to reduce phishing. For example a registry might
restrict use of script and/or digit mixing as part of its security policy (also see [23]).
The registry may also require both A-label and U-label pairs of IDN labels as a
compulsory registration practice to ensure correct registration.

3.3.3 RESOLUTION PROCESS

Domain name resolution, also called DNS look-up, refers to the retrieval of a record
from the DNS given a domain name. When a user enters a URL in an address bar, or
clicks on a link, a series of steps are performed to provide access to the requested
resource. The IDNA200x protocol treats registration and look-up as separate
processes. The IDNA200x look-up protocol involves less restrictive checks on the
domain name than those performed at registration time, because it is assumed that
the domain names already present in the DNS are valid.

The IDNA200x domain name resolution process is summarized below.

1. The user submits an IDN, e.g. by typing it in the address bar of the browser or
clicking on a hyperlink.

2> This policy for IDNs is not yet finalized.

50

From Protocol to Production: Implementing the IDNs

2. The application layer converts the input to an A-label, using the steps
discussed in Section 3.2.1. Protocol level checks are necessary in this case. It
may be noted that at resolution time CONTEXT] rules are applied but
CONTEXTO rules are not applied [18]. Language and script level checks may
optionally be performed.

3. The A-label is looked up in the DNS, using normal DNS resolution procedures
and given in Figure 1.2. As all variants are already handled by making
requisite redundant entries in the zone files during the registration, there is
no need to generate any variants in the look-up process.

3.4 ROLE OF ROOT

The role of root is limited to the top-level domains (TLDs), while all the other labels
are handled by the TLD registry directly.

Consequently, root is only responsible for registering ccTLDs and gTLDs. This is
also true for IDNs, i.e. root is responsible for registering all IDN ccTLDs and IDN
gTLDs. An IDN TLD is inserted in the IANA root zone database after protocol level
checks have been performed and the label is validated. The delegation process is
complete after the IDN TLD has been inserted at the root. An IDN TLD registry may
register its IDN tables with IANA, which makes these publically available on its
website [36]. The Fast Track process of ICANN puts further restrictions on
registration of IDN TLDs. It is discussed in the next chapter.

It should be noted here that like second-level IDN labels, the IDN TLD label might
also have variants. So, a variant management policy at the root level is also needed
for registration and look-up. This becomes even more important in cases where the
variants look exactly the same. Two alternatives can be adopted, i.e. either reserve
preferred variants and block all other variants, or delegate preferred variants and
block all other variants?4. Only delegation of variant TLD in the root would allow it
to be looked-up. It can technically be managed either through twin delegations in
the root for the same TLD (with two NS records), or with the use of DNAME
resource record [34] in the root to enable domain aliasing. The policy of how
variants will be managed at root level is still being devised at the time of publication
of this report. Once the IDN TLDs are delegated, the resolution process will proceed
as per the variant management policy deployed.

3.5 CASE-STUDIES

This section describes efforts of some individual regional work groups towards the
implementation of IDNs in their specific scripts and languages. The CJK/Japanese,
Russian, Tamil and Arabic languages are included.

** This is being discussed in the context of IDN Implementation Support working group at the time of
publication of this work.

51

From Protocol to Production: Implementing the IDNs

3.5.1 JoINT ENGINEERING TEAM (JET)

3.5.1.1 History

Joint Engineering Team was established in 2000 to investigate the technical issues
faced by Japanese Network Information Center (JPNIC under the Asia Pacific
Networking Group (APNG). The group worked on the C]JK (Chinese-Japanese-
Korean) languages. JET was established as a result of MINC (Multilingual Internet
Naming Consortium) activities of bringing together regional groups in the Asia
Pacific regions and coordinating their activities towards the deployment of domain
names in regional languages. The team comprises of members from CNNIC (Chinese
Network Information Center), TWNIC (Taiwan Network Information Center), KRNIC
(Korean Network information Center) and JPNIC (Japanese Network information
Center).

3.5.1.2 Activities

The purpose of establishment of JET was to develop language tables for CJK
languages. The workgroup released the guidelines for the registration and
administration of IDNs for CJK which were published in an IETF informational
document [30]. IESG made a specific note on this effort of JET and advised all other
language communities to adopt JET’s approach in developing language and variant
tables as well as enforcing guidelines and policy decisions regarding IDN
registration.

JET tries to address the deployment, registration and policy enforcement issues
related to IDNs through proper administration at the registries instead of just
restrictions at the protocol level. The RFC published in this respect specifically aims
at resolving confusable-character issue through the use of Language Variant Tables
(LVTs) to reflect the language preferences.

An LVT is a three-column table. The first column corresponds to a list of Valid Code
Points (VCPs). These are the code-points which are required by the language and
are allowed in the protocol as well. The second column of the table lists code-points
against each VCP which provide suitable substitution for it. These are called
Preferred Variants. The third and final column of the table specifies a second list of
code-points against each VCP. These are called Character Variants. Preferred and
Character Variants are different from each other in that the former are actually
registered in a zone file and activated whereas the character variants are not
registered in the zone file but rather reserved for each valid code-point. Thus a
registrant registering a domain name ends up with a bundle of domain names (with
Preferred and Character Variants) called an IDN package. Domain name are
registered and deleted from a zone in the form of an atomic IDN package.

52

From Protocol to Production: Implementing the IDNs

3.5.2 RuUSSIAN LANGUAGE WORK GROUP /CYRILLIC LANGUAGE INTERNET NAMING
CONSORTIUM

3.5.2.1 History

The Russian Language Work Group (RLWG) was created in November 2001 under
MINC. Later, with support of Russian Chamber of Commerce and prominent Russian
registries, Russian Language Network Information Center (RLNIC) and Cyrillic
Languages Internet Names Consortium (CyrLINC) were formed. These entities, with
technology licensed from iDNS.net, aimed at launching interoperable IDN testing
within Russia. The role of the RLWG has been to ensure that language and policy
issues relating to the Russian script as used in Russia will be adequately adhered to
by all parties.

CyrLINC [31] aims to coordinate efforts to develop a multilingual Internet
addressing system within Cyrillic script communities. The Cyrillic script is used for
writing a number of languages including Russian, Byelorussian, Ukrainian,
Bulgarian, Macedonian, Mongolian, Serbian, Kazakh, Kirghiz, Uzbek, Azerbaijani,
Bosnian, Turkmen etc. To achieve the projected objectives, CyrLINC plans to work as
follows.

1. Consider and discuss IDN related policy issues

2. Develop protocols related to internationalized Internet addressing systems

3. Manage the implementation of IDN system for registries, registrars and
related organizations

3.5.2.2 Activities

A Best Current Practices document titled “Internationalized Domain Names
Registration and Administration Guideline for Russian, Ukrainian, Bulgarian and
Byelorussian languages in ASCII TLDs” has been published by this working group. It
was published in 2003 and revised in 2007 [28].

This document is a guideline for registries on registering IDNs in these languages.
The first step is to identify a set of valid code-points that will be accepted under
IDNA for the language. Again, the approach adopted here is that of using variant
tables that list all valid code-points and also specifies additional character variants
that might cause confusion. It is up to the registry whether to register IDNs in a
package (like CJK guidelines), or register one domain name and reserve all the rest
containing confusable/variant characters. These tables are language-specific. The
registry can either allocate all the labels (valid and variant) to the same registrant,
block all other labels to prevent any further registrations of the variant labels or use
a hybrid allocation reserving some labels while permitting others to be registered to
different registrants.

RWLG is currently not active.

53

From Protocol to Production: Implementing the IDNs

3.5.3 INTERNATIONAL FORUM FOR INFORMATION TECHNOLOGY IN TAMIL

3.5.3.1 History

International Forum for Information Technology in Tamil [32] was formed in 2000
based on a pre-INFITT group under MINC. It is a worldwide group with 13 member
countries - India, Singapore, Malaysia, UK, USA, Sri Lanka, Germany, Switzerland,
Mauritius, South Africa, Canada, Hong Kong and Australia. The IDN working group
(WG-03) was initiated in 2000. The initial objectives of this work group were to
collaborate with MINC and other appropriate stakeholders to coordinate the test
deployment of Tamil domain names, to participate in any language or application
interoperability testing, and to recommend to INFITT on the feasibility of
operational Tamil domain names.

3.5.3.2 Activities

The IDN gTLDs equivalent for .com, .net, org, .edu and .gov were finalized and
released in 2001 as shown below and were approved by INFITT. It was decided to
expand the range of TLDs in Tamil and also release equivalents for country-code top
level domains.

Table 3.1. gTLD Translations in Tamil

com Qu6uT
net (3)em vt
org S|6WLD
edu H6V6T
gov 9T

3.5.4 ARABIC SCRIPT IDNS WORKING GROUP

3.5.4.1 History

Arabic Script IDNs Working Group (ASIWG) was established in early 2008 as a self-
organizing group involving members from language communities that use Arabic
script in their writing systems [33]. The work group aims at providing a framework
for the deployment of Arabic script IDNs on the Internet. The initial work group
goals include developing language tables for Arabic script IDNs, resolving technical
and policy issues associated with the deployment and use of Arabic IDNs and
proposing guidelines on implementation of Arabic IDNs. It includes representations
from ICANN, Unicode, IETF, ISOC Africa and Arab League, in addition to members
from Egypt, Iran, Kuwait, Pakistan, Saudi Arabia, Syria, UAE, Malaysia, Jordan, US
and other countries. A number of languages are represented including Arabic,
Persian, Urdu, Sindhi, Pashto and Jawi.

3.5.4.2 Activities
Four meetings of the work group have been held so far, with major outcomes
relating to the development of language tables. Some major issues concerning

54

From Protocol to Production: Implementing the IDNs

Arabic script domain names are the presence of confusable characters within and
across the script, use of ZWJ/ZWN], more than one digits block, non-spacing
characters and development of variant tables. The work group has prepared a set of
documents on the above mentioned issues and identified the sets of visually similar
characters. It has also proposed a layered model to classify handling of issues at four
different levels.

1.

2.

Protocol Level - protocol level decisions about characters are made at this
level. This reflects the PVALID, DISALLOWED and CONTEXT]/O properties of
code-points. The group has given feedback to the protocol process on
character properties within the Arabic script block and also the rules
concerning the contextual character ZWN]. The issue of digit mixing has also
been discussed in detail and feedback has been integrated into the protocol
development process.

Script Level - this level takes into account issues pertaining to the Arabic
script in general. This is applicable to all languages using the script. The
group has agreed to block certain characters across all languages, including
some combining marks, especially until the technology is mature to handle
them without creating user confusion. Extended normalization is also being
documented.

Language Level - this is the level where registries implement/enforce
language level rules and preferences. Decisions taken and restrictions
imposed at this level are specific to a particular language. The confusable
character issue is addressed at this level. The group has been collecting
different language and variant tables for various languages in this context.

User Level - this the top-most level where application level issues are
addressed such as rendering and display of text to the user. Normalization
and other relevant issues are being documented by ASIWG at this level.

The work group is currently active.

55

From Protocol to Production: Implementing the IDNs

4 THE NEXT STEP - FAST TRACK PROCESS

As a result of the final report of IDNC WG in June 2008, ICANN approved the
development of a Fast Track implementation plan [37] for introducing a limited
number of IDN country-code Top Level Domains (ccTLDs) corresponding to the
two-letter ISO-3166 codes [38] in the root. The draft plan lays out the procedure for
countries and territories to request their country name in the local language or
script as an IDN ccTLD and is based on the feedback received during different public
comment periods since 2008. The proposed launch for ICANN ccTLD Fast Track
Process is in November, 2009.

4.1 PARTICIPATION CRITERIA

Countries interested in participating in the Fast Track process are required to meet
the following criteria:

1. The country must be listed in the International Standard 3166-1 two-letter
country codes list.

2. The IDN ccTLD manager must show documented support from the country
or territory corresponding to the relevant ISO 3166-1 entry. This could be
signed letter of support from a governmental authority or a senior
representative of the department which is responsible for domain name
administration.

4.2 IDN ccTLD STRING CRITERIA

The proposed IDN ccTLD string should be a minimum of two characters long in
Unicode, while its length should not exceed 63 characters in ACE. The language of
the string must be an official language of the country. This should be supported by a
letter of verification by the public authority. In addition, languages based on Latin
script are not eligible for the Fast Track process.

The IDN ccTLD string must be a meaningful representation of the country name.
This has to be supported by documented evidence from an internationally
recognized expert or organization. An ICANN accredited list of such organizations is
given in [39].

Only one string per official language or script per country is allowed. For those
countries that require delegation of variant TLDs in the root, the desired variants
have to be submitted along with the requested IDN ccTLD. These will be reserved
based on the string evaluation criteria, but not necessarily delegated.

Finally, the requested string must fulfill the technical string requirements as
specified in the IDNA protocol and ICANN guidelines [40].

56

From Protocol to Production: Implementing the IDNs

4.3 GENERAL PROCESS OVERVIEW
The general Fast Track process is divided into three phases [39].

1. Preparation Stage
The requester identifies and selects the languages of the IDN ccTLD string,
selects a meaningful string and develops the necessary IDN tables and
variant tables. In addition, the requester prepares relevant documents from
the public authority as evidence for the government and local community
support, official language and meaningfulness of string.

2. Request Submission for String Evaluation Stage
In the string evaluation stage, ICANN carries out a number of steps namely
request completeness validation, linguistic process validation, DNS stability
evaluation and publishing of validated string. This is to ensure that requests
are complete in all respects with required documented evidence of support
and the string fulfills all technical and language requirements.

3. Request Submission for Delegation Evaluation Stage
After a request has successfully passed Stage-2, the standard IANA delegation
function is performed as already followed for ASCII two-letter ccTLDs [41].
The steps followed by IANA ensure that the prospective ccTLD manager has
requisite technical competence and resources to administer the domain. It
also verifies that the ccTLD manager has necessary authority and support of
the respective country’s government to operate the TLD appropriately.

This follows a final ICANN Board review to evaluate whether the requests are
consistent with administration policies and ICANN bylaws. After the approval of the
request, ICANN follows its regular IANA root zone change function and the ccTLD is
delegated in the root zone.

4.4 CONCLUSION

After many years of patience and perseverance, IDNs are soon to become a reality. It
is certainly a significant new chapter in the evolution of the Internet. However, with
many core issues still not well-articulated, this step forward will certainly have its
share of challenges. Variant definition, variant handling policy, Whois policy,
significant expansion of namespace, dispute resolution and many other issues still
await clear specifications from the community. Nevertheless, the resolve, which the
community has already shown, leaves no doubt that the challenges will be
addressed as we gain more experience with IDNs.

57

From Protocol to Production: Implementing the IDNs

REFERENCES

58

[1] W3C Internationalization Activities, FAQ: Internationalization vs.
Localization. Accessed from http://www.w3.org/International/questions/
qa-i18n.

[2] P. Twomey (2007). “Effect of Multilingualism on the Internet. International
Issues that Affect How Governments and Economies Address Issues Relating
to a Global Infrastructure.” NSF/OECD Workshop on Social and Economic
Factors Shaping the Future of the Internet.

[3] P. Mockapetris (1987). “Domain Names - Concepts and Facilities.” RFC 1034,
IETF. Accessed from http://www.ietf.org/rfc/rfc1034.txt.

[4] P. Mockapetris (1987). “Domain Names - Implementation and Specification.”
RFC 1035, IETF. Accessed from http://www.ietf.org/rfc/rfc1035.txt.

[5] T. Berners-Lee, R. Fielding, L. Masinter (2005). “Uniform Resource Identifier
(URI): Generic Syntax.” RFC 3986, IETF. Accessed from
http://www.ietf.org/rfc/rfc3986.

[6] Wikipedia. “Root Nameserver.” Accessed from http://en.wikipedia.org/
wiki/Root nameserver.

[7]]. Seng (2009). “History of IDN.” Presented at APNIC meeting Beijing,
accessed from http://meetings.apnic.net/data/assets/pdf file/0014/14009/
seng-idn-overview.pdf.

[8] P. Hoffman (2002). “Preparation of Internationalized Strings ("stringprep").”
RFC 3454, IETF. Accessed from http://www.rfc-editor.org/rfc/rfc3454.txt.

[9] P. Faltstrom, P.Hoffman, A. Costello (2003). “Internationalizing Domain
Names in Applications.” RFC 3490, IETF. Accessed from http://www.rfc-
editor.org/rfc/rfc3490.txt.

[10] P. Hoffman, M. Blanchet (2003). “Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN).” RFC 3491, IETF. Accessed from
http://www.rfc-editor.org/rfc/rfc3491.txt.

[11] A. Costello (2003). “Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA).” RFC 3492, IETF.
Accessed from http://www.rfc-editor.org/rfc/rfc3492.txt.

[12]]. Klensin, P. Faltstrom, C. Karp (2006). “Review and Recommendations for
Internationalized Domain Names (IDNs).” RFC 4690, IETF. http://www.rfc-
editor.org/rfc/rfc4690.txt.

[13] The Unicode Consortium. Unicode character data. Accessed from
http: //www.unicode.org/Public/UNIDATA /UnicodeData.txt.

[14] P. Faltstrom (2009). “The Unicode code points and IDNA.” Internet Draft
(work in progress). Accessed from http://tools.ietf.org/html/draft-ietf-
idnabis-tables-07.

[15] H. Alvestrand, C.Karp (2009). “Right-to-Left Scripts for IDNA.” Internet
Draft (work in progress). Accessed from http://tools.ietf.org/html/draft-ietf-
idnabis-bidi-06.

From Protocol to Production: Implementing the IDNs

[16] M. Davis, K. Whistler, M. Diirst (2009). “Unicode Normalization forms.”
Unicode Standard Annex #15, Unicode Consortium. Accessed from
http://unicode.org/reports/trl5.

[17] P. Resnick, P. Hoffman (2009). “Mapping Characters in IDNA.” Internet
Draft (work in progress). Accessed from http://tools.ietf.org/html/draft-ietf-
idnabis-mappings-04.

[18] J. Klensin (2009). “Internationalized Domain Names in Applications
(IDNA): Protocol.” Internet Draft (work in progress). Accessed from
http://tools.ietf.org/html/draft-ietf-idnabis-protocol-16

[19] K. Harrenstien, M. Stahl and E. Feinler (1985). “DOD Internet Host Table
Specification.” RFC 952, IETF. Accessed from http://tools.ietf.org/html/
rfc952.

[20] The Unicode Consortium (2009). “Property Value Aliases”. Accessed from
http://unicode.org/Public/UNIDATA/PropertyValueAliases.txt.

[21] M. Davis (2009). “Unicode Identifier and Pattern Syntax.” Unicode Standard
Annex #31, Unicode Consortium. Accessed from http://unicode.org/reports/
tr31/.

[22] R. A. Wasala, C. Liyanage, H. Wijayawardhana, R. Weerasinghe (2008).
“Implementation of Internet Domain Names in Sinhala.” PAN Localization
Project.

[23] M. Davis (2006). “Unicode Security Mechanisms.” Unicode Technical
Standard #39, Unicode Consortium. Accessed from http://www.unicode.org/
reports/tr39/.

[24] P. Constable (2004). “Proposal on Clarification and Consolidation of the
Function of ZERO WIDTH JOINER in Indic Scripts”. Public Review Issue # 37,
Unicode Consortium. Accessed from http://www.unicode.org/review/pr-
37.pdf.

[25] P. Faltstrom (2009). “The Unicode code points and IDNA.” Internet Draft
(work in progress). Accessed from http://tools.ietf.org/html/draft-ietf-
idnabis-tables-07.

[26] Right-to-left scripts for IDNA (draft-ietf-idnabis-bidi-06).
http://tools.ietf.org/html/draft-ietf-idnabis-bidi-06.

[27] The Unicode Consortium (2006). “East Asian Scripts”. The Unicode Standard
5.0. Addison Wesley, USA.

[28] Sergey Charikov (2007). “Internationalized Domain Names Registration
and Administration Guideline for Russian, Ukrainian, Bulgarian and
Byelorussian languages in ASCII TLDs.” Internet Draft. Accessed from
http://www.cyrlinc.org/docs/draft-cyrlinc-idn-reg-01.txt.

[29] J. Klensin (2009). “Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework.” Internet Draft (work in
progress). Accessed from http://tools.ietf.org/html/ draft-ietf-idnabis-defs-
11.

[30] K. Konishi, K.Huang, H. Qian, Y. Ko (2004). “Joint Engineering Team (JET)
Guidelines for Internationalized Domain Names (IDN) Registration and
Administration for Chinese, Japanese, and Korean.” RFC 3743, IETF. Accessed
from http://tools.ietf.org/html/rfc3743.

59

From Protocol to Production: Implementing the IDNs

60

[31] Cyrillic Languages Internet Names Consortium. http://www.cyrlinc.org/

[32] International Forum for Information Technology in Tamil.
http://www.infitt.org/.

[33] ASIWG. http://www.arabic-script-domains.org/wiki/Main Page.

[34] M. Crawford (1999). “Non-Terminal DNS Name Redirection.” RFC 2672,
IETF. Accessed from http://www.ietf.org/rfc/rfc2672.txt.

[35] J. Gargano, K. Weiss (1995). “Whois and Network Information Lookup
Service, Whois++.” RFCs 1834, IETF. Accessed from http://www.fags.org/
rfcs/rfc1834.html.

[36] IANA Repository of IDN Practices. Accessed from
http://www.iana.org/domains/idn-tables

[37] ICANN’s ccTLD Fast Track Process. http://www.icann.org/en/topics/idn/
fast-track/.

[38] ISO Maintenance Agency. http://www.iso.org/iso/english country names
and code elements.

[39] Internet Corporation for Assigned Names and Numbers (ICANN) (2009).
“Fast Track Implementation Plan.” Accessed from http://www.icann.org/
en/topics/idn/fast-track/idn-cctld-implementation-plan-30sep09-en.pdf.

[40] Internet Corporation for Assigned Names and Numbers (ICANN) (2007).
“Guidelines for the Implementation of Internationalized Domain Names”.
Accessed from http://www.icann.org/en/topics/idn/implementation-
guidelines.htm.

[41] TANA Guide to Delegation Procedures. http://www.iana.org/domains/
root/delegation-guide/.

[42] Internet Corporation for Assigned Names and Numbers.

http://www.icann.org/en/about/.

ICANN Mission. http://www.icann.org/en/general /bylaws.htm#I.

[43]
[44] Internet Engineering Task Force (IETF). http://www.ietf.org/index.html .
[45] IETF’s Mission. http://www.ietf.org/rfc/rfc3935.txt .
[46] The Internet Society (ISOC). http://www.isoc.org/isoc/.
[47] Governmental Advisory Committee (GAC). http://www.icann.org/en/
committees/gac/.
[48] ccNSO IDNC WG. http://ccnso.icann.org/workinggroups/idncwg.htm.
|
|
|
|
]

[49] GNSO. http://gnso.icann.org/.

[50] ICANN'’s PAC for IDNs_http://www.icann.org/en/committees/idnpac/.
[51] ASO. http://aso.icann.org/about.html.

[52] ALAC. http://www.atlarge.icann.org.

Internet Governance Forum. http://www.intgovforum.org/cms/
index.php/aboutigf.

[54] World Summit on Information Society. http://www.itu.int/wsis/
index.html.

[55] The Unicode Consortium (2006). “Character Properties”. The Unicode
Standard 5.0. Addison Wesley, USA.

[56] The Unicode Consortium (2006). “General Structure”. The Unicode Standard
5.0. Addison Wesley, USA.

[53

From Protocol to Production: Implementing the IDNs

[57] Internet Corporation for Assigned Names and Numbers (ICANN) (2009).
“Draft Applicant Guidebook version 3. Accessed from
http://www.icann.org/ en/topics/new-gtlds/draft-rfp-clean-04oct09-en.pdf.

61

