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1. Introduction 
 
In the era of globalization, communication among languages becomes much more 
important. Computer as a tool to help facilitating communication between different 
languages has been used more actively. People has been hoping that natural language 
processing and speech processing, which are branches of artificial intelligence with ICT 
(Information and Communication Technology), can assist in smoothening the 
communication among people with different languages. However, especially for 
Indonesian language, there were only few researches on computational linguistics, natural 
language processing and speech processing in the past. 

 Machine translation (MT) is a sub-field of computational linguistics that investigates 
the use of computer software to translate text or speech from one natural language to 
another. At its basic level, MT performs simple substitution of words in one natural 
language for words in another. Using corpus techniques, more complex translations may 
be attempted, allowing for better handling of differences in linguistic typology, phrase 
recognition, and translation of idioms, as well as the isolation of anomalies. 
 Despite its involvement in international projects, basic researches in MT are still 
underdeveloped. For instance, there is no available corpus (collection of linguistic data; 
written, spoken, or a mixture of the two) -- textual corpus for natural language processing 
researches or spoken corpus for speech processing researches – which is vital and very 
basic mean to conduct a research in the field of MT, natural language processing or 
speech processing. In addition, researchers need basic resources to study the morphology 
and syntax of Bahasa Indonesia for doing further researches. By using a corpus, one may 
study the possible structure of sentences (both formal and informal language), words 
frequency, relation among phrases, etc. In short, information contained in a linguistic 
corpus is very useful and crucial for doing a research in natural language processing or 
speech processing. 

 Based on the fact that there is no corpus available and its crucial importance, the first 
phase of this project is to build large bilingual Indonesian-English corpus, which in turn 
are used to build ready-to-use modules/systems for the statistical machine translation 
(SMT) of English to Bahasa Indonesia.  

 As with other parts of the world, Internet has connected Indonesian user with the rest 
of the world. Internet has been providing wealthy information on seemingly every thing. 
However, information in Internet is mostly written in English language. The average 
English proficiency among Indonesians, particularly those living in rural areas and small 
towns is very low. For many Indonesian people, writing in English is still an obstacle. It 
will be very useful if there is a tool such as machine translation system to help translating 
English into Indonesian texts and vice versa. 



Statistical machine translation tries to generate translations using statistical methods 
based on bilingual text corpora. The term parallel corpora are typically used in linguistic 
circles to refer to texts that are translations of each other. In order to exploit a parallel 
text, some kind of text alignment, which identifies equivalent text segments 
(approximately sentences), is a prerequisite for analysis.  
 
The goal of statistical machine translation is to translate a source language sequence into 
a target language sequence by maximizing the posterior probability of the target sequence 
given the source sequence. In state-of-the-art translation systems, this posterior 
probability usually is modeled as a combination of several different models, such as: 
phrase-based models for both translation directions, lexicon models for translation 
directions, target language model, phrase and word penalties, etc.  
 
Probabilities that describe correspondences between the words in the source language and 
the words in the target language are learned from a bilingual parallel text corpus and 
language model probabilities are learned from a monolingual text in the target language. 
The larger the available training corpus used for translation model, then the better the 
performance of a translation system. 
 
The benefits of statistical machine translation over traditional paradigms that are most 
often cited are the following: 
 

 Better use of resources 
There is a great deal of natural language in machine-readable format. Generally, 
SMT systems are not tailored to any specific pair of languages. Rule-based 
translation systems require the manual development of linguistic rules, which can 
be costly, and which often do not generalize to other languages. 
 

 More natural translations 
The ideas behind statistical machine translation come out of information theory. 
Essentially, the document is translated on the probability p(e|f) that a string e in 
native language (for example, English) is the translation of a string f in foreign 
language (such as Bahasa Indonesia). Generally, these probabilities are estimated 
using techniques of parameter estimation. 
 
 

2. Development Framework 
 

There are two important components in forming machine translation system where both 
this process is important and each other interconnected component, first is the corpora 
and secondly is Statistical Machine Translation (SMT). The Final Design Framework of 
English-Indonesia SMT is given in Figure 1. This development framework differs from 
the one that we reported in the Research Report on Initial Design SMT Framework 
(Report No.3 PANL Report BPPT Initial Design Framework SMT.pdf) 

 
 



 

 
 
 

 

2.1. Corpora 
 
As a language is dynamic and constantly evolving, it is essential that the constructed 
linguistic resources are based on empirical evidence. To support this, the first phase of the 
work involves the compilation of corpora, i.e. monolingual collection of electronic texts 
in Bahasa Indonesia and bilingual collection of parallel English and Indonesian texts. The 
choice of documents is affected by the intended coverage of the linguistic resources.  

 PANL-BPPT-ID Monolingual Indonesian corpus (Bahasa Indonesia) 

The collection is built on 500,000 words corresponding to around 50,000 
sentences in Bahasa Indonesia. In order to create the target language model 
(Indonesia language model) more acurately, it is planned that the PANL-BPPT 
monolingual corpus will be combined with ANTARA corpus which consist of 
approximately 2,500,000 sentences. The corpus will contain formal and informal 
words, and various sentence structures. 

 PANL-BPPT-EN Monolingual English corpus (Translation of Indonesian corpus) 

It is planned that we will use the result of translation of PANL-BPPT-ID to 
develop English monolingual corpus which contains various domain. It will 
consist of approximately 50,000 sentences. 

 PANL-BPPT-ID-EN Parallel corpus (Bahasa Indonesia and English) 

The parallel corpus (PANL-BPPT-ID-EN) is constructed through sentence 
alignment process of Indonesia and English Monolingual Corpus. The total 
collection will contain 500,000 words of Indonesian, approximately more than 
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Figure 1. Final Design of Indonesian-English Development Framework 



50,000 sentences for each language, making a total of 100,000 sentences in both 
languages. 

 

2.2  Statistical Machine Translation Toolkit 

In order to experiment the feasibility of statistical MT for English- Indonesian, we build a 
prototype of SMT Toolkit using the available Open Source Package. We use SRILM to 
build the n-gram language model and translation model, experiment with PHARAOH in 
the initial design stage and subsequently use MOSES (Koehn, 2007) as a beam search 
decoder. 

The decoder was originally developed for the phrase model proposed by Marcu and 
Wong. At that time, only a greedy hill-climbing decoder was available, which was 
insufficient for our work on noun phrase translation (Koehn, 2003). The decoder 
implements a beam search and is roughly similar to work by Tillmann  and Och. In fact, 
by reframing Och's alignment template model as a phrase translation model, the decoder 
is also suitable for his model, as well as other recently proposed phrase models. The 
phrase-based decoder is developed by employing a beam search algorithm, similar to the 
one used by Jelinek for speech recognition. The Bahasa Indonesia output sentence is 
generated left to right in form of hypotheses. 

The development objective on our work is to build a statistical machine translation 
toolkit and make it available to researchers in our PANL community. Therefore, this 
SMT toolkit would include corpus preparation software, bilingual text training software, 
and run time decoding software for performing actual translation. All these software 
components are based on Open Source Software (OSS).  

 

2.3  Future Systems:  Symbolic-Statistical Machine translation 

The machine translation system will consist of the above modules. Statistical method or 
combination of statistical and example-based method (using the parallel corpus) will be 
employed. 
 
The machine translation system will consist of the following modules: 
 
 Morphological analyzer/POS Tagger 

 The derivational morphology of Bahasa Indonesia, particularly that of verbal 
morphology, is quite complex, and therefore requires careful analysis. Existing 
Indonesian morphological literatures will be surveyed and compared with the empirical 
evidence as found in the corpus. The morphological analysis will be built using statistical 
methods such as n-gram or HMM. 

 Shallow parser/ Syntactic parser 

 Completion of the morphological analysis will enable the development of phrase 
parser. This parser will decide noun phrases, verb phrases, adjective phrases, etc. in a 
sentence. This parser will be built using statistical methods also. Furthermore, a robust 
syntactic parser can be build using output of the shallow parser to decide syntactical 
structure of a sentence, i.e., which part of a sentence is the subject, predicate, object. 



 Phrase Reordering System 

 This module will perform transformation of phrase structure from Indonesian DM to 
English MD, to enable correct translation of noun phrase and adjective phrase. This 
module will prepare the input sentence or files prior of translation process, to enable 
better translation quality 

 Generation system: 
This module will produce target sentences (Indonesian or English) based on an 
intermediate representation created by the statistical MT.   

 

Additional conditional reordering models may be built. These are conditioned on 
specified factors (in the source and target language), and learn different reordering 
probabilities for each phrase pair (or just the foreign phrase). Possible configurations are 

1. MSD vs. Monotonicity. MSD models consider three different orientation 
types: monotone, swap, and discontinuous. Monotonicity models consider 
only monotone or non-monotone, in other words swap, and discontinous are 
lumped together. 

2. f vs. fe. The model may be conditioned on the Indonesian phrase (f), or on both 
the Indonesia phrase and English phrase (fe). 

3. Unidirectional vs. Bidirectional. For each phrase, the ordering of itself in respect 
to the previous is considered. For bidirectional models, also the ordering of the 
next phrase in respect to the currect phrase is modeled. 

 
We will also perform baseline evaluations. These evaluations would consist of both 
objective measures on statistical model perplexity and subjective measures on human 
judgments of quality, as well as attempts to correlate the two. We would also produce 
learning curves that show how system performance changes when we vary the amount of 
bilingual training text. 

 

3. Implementation of English-Indonesian SMT 
 
3.1 Hardware Preparation 
In developing the SMT we will use a server with the computing capacity to process a big 
translation table, minimum of 1.3 GHz. The SMT decoder requires memory of 2 GB. We 
opt to select the latest server technology which is based on dual core or quad core CPU. 
We use the memory system which can handle error rate correction. The network adapter 
must have 10/100/1000 Mbps bandwidth access, which is highly important when running 
parallel processes for servicing multiple client. 
 
3.2 Data Preparation 
In order to prepare the SMT for English-Bahasa Indonesia, we need to train the toolkit 
using a new language pairs. The need for bilingual texts for training is compulsory for the 
SMT decoder; hence we use the collected corpus PANL-BPPT-ID-EN (parallel corpus) 
 
 



 
3.3 Language Model Preparation 
 
The tool that we use is SRILM (SRI Language Modeling). SRILM is a toolkit for 
building and applying statistical language models (LMs), primarily for use in speech 
recognition, statistical tagging and segmentation, and machine translation. It has been 
under development in the SRI Speech Technology and Research Laboratory since 1995. 
The toolkit has also greatly benefited from its use and enhancements during the Johns 
Hopkins University/CLSP summer workshops in 1995, 1996, 1997, and 2002. This tool 
available in http://www.speech.sri.com/projects/srilm/download.html 
 
 

 

 

 
Here is a brief guide on how to build the SRI LM tools and associated libraries. 

 
1. Unpack.  This should give a top-level directory with the subdirectories listed in 

README, as well as a few documentation files and a Makefile. 

  For an overview of SRILM, see the paper in doc/paper.ps 

 For reference information, look in man/html 

2. Set the SRILM variable in the top-level Makefile to point to this top-level 

directory (an absolute path). 

3. You need a SunOS (Sparc or i386), IRIX 5.x, Alpha OSF, Linux i686, Mac OSX, 

or CYGWIN platform to compile out of the box.  For other OS/cpu combinations 

you will have to modify the sbin/machine-type script to detect (and name) the 
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Figure 2.  Data Processing of Statistical Model for SMT 



platform type, and create a file common/Makefile.machine. <platform> that 

defines platform-dependent makefile variables. 

As a workaround, the MACHINE_TYPE variable can also be set on the make     

comand line 

   make MACHINE_TYPE=foo ... 
 

in which case no changes to sbin/machine-type are needed. 

Some platform-specific notes may be found in doc/README.<platform>. 

Even on the known platforms you might have to modify variables defined in 

common/Makefile.machine.<platform> .  Candidates for changes are 

 

   CC, CXX:  choose compiler or compiler version.  For example, you might 

  have to specify a directory path to the compiler driver. 

   DEMANGLE_FILTER:  If the "c++filt" program is not installed on your system 

  set this variable to empty. 

   TCL_INCLUDE, TCL_LIBRARY:  to whatever is needed to find the Tcl header 

  files and library.  If Tcl is not available, set NO_TCL=X 

  and leave the above variables empty. 
 

It is recommended that you record changes to platform dependent variables 

in common/Makefile.site.<platform> and leave Makefile.machine.<platform> 

unchanged.  That makes it easier to upgrade SRILM to future releases  

(just copy common/Makefile.site.<platform> to a new installation). 

 
4. You need the following free third-party software to build SRILM: 

 - gcc version 3.4.3 or higher 

   (older versions might work as well, but are no longer supported). 

SRILM is occasionally tested with other compilers, see the portability notes in 

the CHANGES file. 

 - GNU make  

 - John Ousterhout's Tcl toolkit, version 7.3 or higher 

   (this is currently used only for some test programs, but is needed 

   for the build to go through without manual intervention). 

 - Additional platform-dependent prerequisites are mentioned in 

   doc/README.<os>-<machinetype>, e.g., doc/README.windows-cygwin. 



 

    The following tools are needed at runtime only: 

 - GNU awk (gawk), to interpret many of the utility scripts 

 - gzip, to read/write compressed files 

 - bzip2, to read/write .bz2 compressed files (optional) 

 - p7zip, to read/write .7z compressed files (optional) 
 

 

For Windows 9x or NT, you will need the CYGWIN UNIX compatibility 

environment, which includes all of the above.  The MinGW andVisual C 

platforms will also work, but with some loss of functionality. See 

doc/README.windows-*  for more information. 

Links to these packages can be found on the SRILM download page 

(http://www.speech.sri.com/projects/srilm/download.html). 

5. In the top-level directory, run 

 gnumake World  or  

 make World  (if the GNU version is the system default) 

   This will create the directories 

 bin/ 

 lib/ 

 include/ 

build everything and install public commands, libraries and headers in these 

directories.  Binaries are actually installed in subdirectories indicating the 

platform type. To create binaries for a platform that is not the default on your 

system, 

use make MACHINE_TYPE=xxx, e.g. 

make MACHINE_TYPE=i686-m64 World # 64-bit binaries for Linux 

make MACHINE_TYPE=msvc World # MS Visual C++ on Windows  

 

6. The result of the above should be a fair number of .h and .cc files in include/, 

libraries in lib/$MACHINE_TYPE, and programs in bin/$MACHINE_TYPE.  In your 

shell, set the following environment variables: 

   PATH  add $SRILM/bin/$MACHINE_TYPE and $SRILM/bin 

   MANPATH  add $SRILM/man 

 
 



7. To test the compiled tools, change into the $SRILM/test directory and run 

 gnumake all 

 
This exercises the most important (though not all) functionality in SRILM and 

compares the results to reference outputs.  If discrepancies are reported, examine 

the output files in $SRILM/test/output and compare them to the corresponding 

files in $SRILM/test/reference. 

8. After a successful build, clean up the source directories of object and binary files 

that are no longer needed: 

 gnumake cleanest 
 
9. (Optional) To build versions of the libraries and executables that are optimized for 

space rather than speed, run 

 gnumake World OPTION=_c 

 gnumake cleanest OPTION=_c 

The libraries will appear in ${SRILM}/lib/${MACHINE_TYPE}_c, with     

executables in ${SRILM}/bin/${MACHINE_TYPE}_c .  The data structures used 

in these versions use sorted arrays rather than hash tables, which     wastes less 

memory, but is also somewhat slower. The directory suffix "_c"     stands for 

"compact". 

Other versions of the binaries can be built in a similar manner. 

The compile options currently supported are  

 OPTION=_c "compact" data structures 

 OPTION=_s "short" count representation 

 OPTION=_l "long long" count representation 

 OPTION=_g debuggable, non-optimized code 

 OPTION=_p profiling executables 

 
10. Recent versions of gawk may not perform correct floating-point arithmetic    

unless either 

 LC_NUMERIC=C or 

 LC_ALL=C 

is set in the environment.  This affects many of the scripts in utils/. 

 
11. Be sure to let me know if I left something out. 

 

 



In this experiment, we use SRILM to functions as follows (see Figure 3): 

 Produce the n-gram of a corpus 

 Train the language model from the n-gram 

 Calculate the perplexity of data test using the trained language model 

 

 

 
          

Figure 2. Step-by Step Usage of SRILM 

 

In order to produce the Language Model (LM), we use the following command line 

instructions:  

 

% ngram-count -text CORPUS_FILE -lm SRILM_FILE 

 

The following is the sample of n-gram count which is obtained from 50.000 sentences 

of monolingual corpus of English:  

 

\data\ 
ngram 1=39993 
ngram 2=60900 
ngram 3=40952 
 
\1-grams: 
-1.362939 </s> 
-99 <s> -0.5451546 
-5.881724 aaaf 
-4.896565 aachen -0.06532428 
-5.881724 aaj 
-5.881724 aala 
-5.881724 aamel 
-5.881724 aamir 
-5.881724 aan 
-5.414177 aap 

Training corpus ngram corpus Count file 

Lexicon ngram count LM 

Test data ngram ppl 

step 1 

step 2 

step 3 



-5.235515 aarhus -0.1352619 
-5.001301 aaron -0.1859574 
-5.881724 aarp 
-5.881724 aatef 
-5.881724 aater 
-4.787421 ababa -0.04195464 
-5.881724 abac 
-5.881724 abad 
-5.881724 abakr 
-4.511215 abandon -0.3002984 
-5.881724 abandonall 
-4.524179 abandoned -0.1512827 
-5.329418 abandoning -0.308226 
-5.626085 abandonment 
-5.881724 abarge 
-5.881724 abassan 
-5.881724 abated 
-5.881724 abating 
-5.881724 abattoir 
-5.881724 abayas 
-5.881724 abba 
-5.881724 abbar 
-3.696341 abbas -0.2815464 
-5.881724 abbasand 
-5.626085 abbassan 
-5.881724 abbey 
-5.626085 abbiati 
-5.881724 abbreviated 
-4.741663 abc -0.07178178 
-5.626085 abd 
-5.414177 abdallah 
-5.881724 abdalmahmood 
-4.595536 abdel -0.3050831 
-5.881724 abdelaziz 
-5.881724 abdelhak 
-5.881724 abdelkader 
. 
. 
. 
\end\ 

 

 

 

3.4 Translation Model Preparation 

 
In the following, we describe in brief on how we prepare Translation Model (English-
Indonesia).  There is 2 sub directories, as follows: 
 

- Directory bin, which contain GIZA++ (packages which implement the IBM 
model) and mkcls which categorize the words into probability classes.  

- Directory corpus, which corpus data is placed for training and building 
translation model. 

 
In these directories, there are Perl scripts available to extract phrase table. In order to 



build the phrase translation table, we use additional scripts (as attached in our report on 
Translation, Alignment and Other Issues Related to Corpus Development). The following 
command is use to build the translation model: 
 

train-phrase-model.perl –root-dir . –f eng –e ind  

--corpus corpus/data20000 

 

4. Evaluation and Related Issues to SMT Design 
 
4.1 Evaluation of Translation Quality 
 
We believe more work on evaluation is called for. There was insufficient time during the 
Phase 1.2 to fully evaluate the quality of output from the Toolkit prototype using Pharaoh 
Decoder, but we record some of our thoughts here. 
 Most MT evaluation regimes involve collecting human judgments over many 
sentences and these regimes are expensive for individual researchers. In the commercial 
world, the market provides a constant evaluation of translation software, albeit one that 
seems currently driven by factors other than output text quality. In the final analysis, there 
is no measure that can substitute for user satisfaction. But this leaves the individual 
researcher in a bind.  
 It is ideal that human subjects fluent in both the source language and the target 
language evaluate the material.  Monolingual users of the target language alone are poorly 
prepared to evaluate the content of the translation, despite reference translations.  This 
point is proven with the DARPA evaluations of 1000 when the quality of human 
translations of variable quality, were also used for evaluation in an exam that asked 
evaluators to answer questions on the content of a translated passage. A monolingual 
evaluator is best suited for evaluating the fluency of the output, and not the content, 
unless the content can really be assured, such as in treaties and other legal documents 
where the translator has a very high incentive for ensuring that precise translations are 
produced. 
 Another concern that arises relates to the use of native speakers of the source 
language and their capacity to determine the fluency of output in the target language, as 
well as possible biases which allow them to find meaning in  “word hash” output from 
MT that a monolingual speaker might missing. In defining the scale for evaluation, we 
aim to address this concern. Since the system is trained on texts with unique properties in 
terms of lexicons used translation styles involved, and so on. We concluded that it was 
reasonable to draw evaluation texts from the pre-training corpus. However, we strongly 
emphasize that in no way is the system to be trained on texts that will later be used for 
evaluation.  
 The speech recognition community has largely focused on word -error recognition 
rate, in the belief that, this figure will ultimately correlate with user satisfaction. And it is 
easy to measure.  
 In finding text for evaluation, there were several concerns length, context, and 
novelty.  Because of limits on the computational complexity of decoding and training the 
corpora was stripped of sentences of length above a certain bound, originally 10 tokens. 
This processed corpus was then used for extracting sentences for evaluation. In addition, 



for the length of the entire evaluation, we suggest a test-bed of 100 sentences. As 100 
sentences seem like a reasonably small amount of work for evaluators per evaluation, we 
decided upon 1000 test sentences from the outset (out of 50,000 sentences in PANL-
BPPT corpus). 
 
 
 
4.2 Training Set Size vs. Translation Quality 
 
One question we had about statistical machine translation was how much data do we 
need? Are sentence pairs enough? If you go from one million sentence pairs to two 
million, how much improvement will you see? We imagined that a lot of data is useful, if 
you’ve never seen the phrase “real estate” before in your parallel corpus, then you 
probably aren’t going to translate it correctly. It is mandatory in the machine learning 
community to plot data size on the x axis vs. performance on the y axis, depicting a 
learning curve of SMT.  

 This is particularly important in natural language processing, where we can 
frequently purchase more data.  The learning curve leads naturally to a second question 
what to plot on the y axis. Machine translation is notoriously difficult to evaluate. It 
shares this notoriety with other tasks that involve generating human language as opposed 
to interpreting it. It is possible to evaluate a speech recognizer by counting word errors, 
not so with a speech synthesizer. Likewise, it is easier to say whether a language 
interpretation system got the right syntactic structure than to say whether a generation 
system produced a good syntactic structure. 

 Machine translation involves both interpretation and generation.  Following many 
of the evaluation regimes that have been proposed for MT, we decided to go with either a 
simple scoring mechanism or a simple relative ranking of translations from different 
systems configurations. 

 Researchers can try discard and adopt many new ideas without involving human 
subjects. They can also compare results on common test data sets. As mentioned above, 
even this is difficult to do in translation. Interestingly, many speech researchers find it 
convenient to evaluate their ideas with respect to perplexity: a measure of how well a 
statistical model fits or explains the data. For example, in language modeling, the goal is 
to produce a program that assigns a probability P(e) to every string of words e*. All these 
probabilities sum to 1 so there is only so much to go around. It is possible to ask how 
good a language model is without making reference to word error rate or any other task 
level measure. One simply asks for the particular number P(e) that a particular 
instantiated model assigns to a particular text.  If the text is good English, we expect P(e) 
to be high if the text is bad English, we expect P(e) to be low. If we observe a language 
model which is assigning probabilities the other way around, then it probably isn’t a very 
good language model. 

 It is reasonable to ask for the P(e) that a model assigns to the text it was trained 
on. In this case, a memorizing program would do very well, by assigning P(e|f). However, 
this program would by definition assign P(e|f) to every other text e* and this will lead to a 
very poor word error rate. Therefore a more reasonable evaluation is test set perplexity, 
which is related to the probability that the model assigns to a previously unseen test 
English text. The language model must lay bets on all kinds of strings. If it concentrates 



its bets on certain subset of strings, then it must hope that when the previously unseen text 
is revealed it is to be found in that subset. Because all probabilities sum to 1, increasing 
our bet on one string necessarily means decreasing our bet on some other string. 

It is typical in language modeling to bet at least something on every conceivable 
string e. If we accidentally bet nothing on e, then our P(e) would be zero, and our 
perplexity would be infinite.  So, if a language model uses previously observed word 
 pair frequencies in constructing a probability score P(e) for a new string, it will 
typically smooth these frequencies so as to accept a string that contains novel word pairs. 

 In statistical MT, a key component is the translation model. We can do the same 
thing. An instantiated translation model, such as learned by GIZA, assigns a probability to 
every pair of sentences. In this case, our previously  unseen test data consists of sentence 
pairs. Given a certain sentence e, a model will lay bets on various sentences. When the 
actual translation is revealed in the test data, we can see whether the model bet a lot or a 
little. We hope it bet a lot. 

 

5. Future Work 
 

The experts in translation have two differing approaches toward the translation concept: 
universalism and monadic. We understood there is a possibility of “un-translation” which 
is “translation fails – or un-translability occurs when it is impossible to build functionally 
relevant features of the situation into contextual meaning of target language (TL) text. 
Broadly speaking, the cases where this happens fail into two categories. Those where the 
difficulty is linguistic, and those where it is cultural. 

 We examine further the translability concept by taking into account that most 
Asian language share very similar “culture” but different in language structure. We can 
not enforce the system and structure to target language without “knowing” the language 
itself. In this case, a rule-based system should be used as a preprocessing to enable the 
structure of source language to approximate the structure of target language. For example, 
in translating Indonesian-English, we need a rule-based system to transform the DM-MD 
rule (Indonesian grammar rule for adjective phrase construction). This rule approximates 
the order of noun and adjective phrase of Indonesian according to English noun or 
adjective phrase. For example: 

 
         MD                                     DM 
sebuah rumah  besar -> a big house 
  (a)         (house)     (big)  
gunung   biru  itu -> the blue mountain 
(mountain)  (blue)     (the) 
 

In our future work, by implementing several modules as pre and post processors, it is 
expected that statistical MT will perform better in translating English to Indonesian by 
having a similar language structure. We described some of these approaches in the 
following 

In a research reported in (Al-Onaizan et al., 2000), an experiment was conducted on 
Tetun- English translation with a small parallel corpus. The translation experiment has 



been done by different groups including one using statistical machine translation. They 
found that the human mind is very capable of deriving dependencies such as morphology, 
cognates, proper names, etc. and that this capability is the crucial reason for the better 
results produced by humans compared to corpus based machine translation. If a program 
sees a particular word or phrase one thousand times during the training, it is more likely 
to learn a correct translation than if it sees it ten times, or never. Because of this, 
statistical translation techniques are less likely to work well when only a small amount of 
data is given. (Callison-Burch and Osborne, 2003) propose a co-training method for 
statistical machine translation using the multilingual European Parliament corpus. 
Multiple translation models trained on different language pairs are used for producing 
new sentence pairs. They are then added to the original corpus and all translation models 
are retrained. The best improvements have been achieved after two or three training 
rounds. 

In (Nießen and Ney, 2004) the impact of the training corpus size for statistical 
machine translation from German into English is investigated, and the use of a 
conventional dictionary and morpho-syntactic information for improving the performance 
is proposed. They use several types of word reordering as well as a hierarchical lexicon 
based on the POS tags and base forms of the German language. They report results on the 
full corpus of about sixty thousand sentences, on the very small part of the corpus 
containing five thousand sentences and on the conventional dictionary only. Morpho-
syntactic information yields significant improvements in all cases and an acceptable 
translation quality is also obtained with the very small corpus as well as using word 
reordering information based on POS tags. 
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