

PAN Localization Project

RESEARCH REPORT

PHASE 2.1

Final Design Report on Statistical Machine
Translation Framework

Agency for the Assessment and Application of Technology

Badan Pengkajian dan Penerapan Teknologi (BPPT)

December 2008

Final Design Report on

Statistical Machine Translation Framework

1. Introduction

In the era of globalization, communication among languages becomes much more
important. Computer as a tool to help facilitating communication between different
languages has been used more actively. People has been hoping that natural language
processing and speech processing, which are branches of artificial intelligence with ICT
(Information and Communication Technology), can assist in smoothening the
communication among people with different languages. However, especially for
Indonesian language, there were only few researches on computational linguistics, natural
language processing and speech processing in the past.

 Machine translation (MT) is a sub-field of computational linguistics that investigates
the use of computer software to translate text or speech from one natural language to
another. At its basic level, MT performs simple substitution of words in one natural
language for words in another. Using corpus techniques, more complex translations may
be attempted, allowing for better handling of differences in linguistic typology, phrase
recognition, and translation of idioms, as well as the isolation of anomalies.
 Despite its involvement in international projects, basic researches in MT are still
underdeveloped. For instance, there is no available corpus (collection of linguistic data;
written, spoken, or a mixture of the two) -- textual corpus for natural language processing
researches or spoken corpus for speech processing researches – which is vital and very
basic mean to conduct a research in the field of MT, natural language processing or
speech processing. In addition, researchers need basic resources to study the morphology
and syntax of Bahasa Indonesia for doing further researches. By using a corpus, one may
study the possible structure of sentences (both formal and informal language), words
frequency, relation among phrases, etc. In short, information contained in a linguistic
corpus is very useful and crucial for doing a research in natural language processing or
speech processing.

 Based on the fact that there is no corpus available and its crucial importance, the first
phase of this project is to build large bilingual Indonesian-English corpus, which in turn
are used to build ready-to-use modules/systems for the statistical machine translation
(SMT) of English to Bahasa Indonesia.

 As with other parts of the world, Internet has connected Indonesian user with the rest
of the world. Internet has been providing wealthy information on seemingly every thing.
However, information in Internet is mostly written in English language. The average
English proficiency among Indonesians, particularly those living in rural areas and small
towns is very low. For many Indonesian people, writing in English is still an obstacle. It
will be very useful if there is a tool such as machine translation system to help translating
English into Indonesian texts and vice versa.

Statistical machine translation tries to generate translations using statistical methods
based on bilingual text corpora. The term parallel corpora are typically used in linguistic
circles to refer to texts that are translations of each other. In order to exploit a parallel
text, some kind of text alignment, which identifies equivalent text segments
(approximately sentences), is a prerequisite for analysis.

The goal of statistical machine translation is to translate a source language sequence into
a target language sequence by maximizing the posterior probability of the target sequence
given the source sequence. In state-of-the-art translation systems, this posterior
probability usually is modeled as a combination of several different models, such as:
phrase-based models for both translation directions, lexicon models for translation
directions, target language model, phrase and word penalties, etc.

Probabilities that describe correspondences between the words in the source language and
the words in the target language are learned from a bilingual parallel text corpus and
language model probabilities are learned from a monolingual text in the target language.
The larger the available training corpus used for translation model, then the better the
performance of a translation system.

The benefits of statistical machine translation over traditional paradigms that are most
often cited are the following:

 Better use of resources
There is a great deal of natural language in machine-readable format. Generally,
SMT systems are not tailored to any specific pair of languages. Rule-based
translation systems require the manual development of linguistic rules, which can
be costly, and which often do not generalize to other languages.

 More natural translations
The ideas behind statistical machine translation come out of information theory.
Essentially, the document is translated on the probability p(e|f) that a string e in
native language (for example, English) is the translation of a string f in foreign
language (such as Bahasa Indonesia). Generally, these probabilities are estimated
using techniques of parameter estimation.

2. Development Framework

There are two important components in forming machine translation system where both
this process is important and each other interconnected component, first is the corpora
and secondly is Statistical Machine Translation (SMT). The Final Design Framework of
English-Indonesia SMT is given in Figure 1. This development framework differs from
the one that we reported in the Research Report on Initial Design SMT Framework
(Report No.3 PANL Report BPPT Initial Design Framework SMT.pdf)

2.1. Corpora

As a language is dynamic and constantly evolving, it is essential that the constructed
linguistic resources are based on empirical evidence. To support this, the first phase of the
work involves the compilation of corpora, i.e. monolingual collection of electronic texts
in Bahasa Indonesia and bilingual collection of parallel English and Indonesian texts. The
choice of documents is affected by the intended coverage of the linguistic resources.

 PANL-BPPT-ID Monolingual Indonesian corpus (Bahasa Indonesia)

The collection is built on 500,000 words corresponding to around 50,000
sentences in Bahasa Indonesia. In order to create the target language model
(Indonesia language model) more acurately, it is planned that the PANL-BPPT
monolingual corpus will be combined with ANTARA corpus which consist of
approximately 2,500,000 sentences. The corpus will contain formal and informal
words, and various sentence structures.

 PANL-BPPT-EN Monolingual English corpus (Translation of Indonesian corpus)

It is planned that we will use the result of translation of PANL-BPPT-ID to
develop English monolingual corpus which contains various domain. It will
consist of approximately 50,000 sentences.

 PANL-BPPT-ID-EN Parallel corpus (Bahasa Indonesia and English)

The parallel corpus (PANL-BPPT-ID-EN) is constructed through sentence
alignment process of Indonesia and English Monolingual Corpus. The total
collection will contain 500,000 words of Indonesian, approximately more than

Moses SMT
Decoder

Indonesian-
English Parallel
Corpus
(PANL-BPPT-ID-EN)

Indonesian
Monolingual
Corpus
(PANL-BPPT-ID)

English
Monolingual
Corpus
(PANL-BPPT-EN)

SRILM
Giza++

Source

Target

Figure 1. Final Design of Indonesian-English Development Framework

50,000 sentences for each language, making a total of 100,000 sentences in both
languages.

2.2 Statistical Machine Translation Toolkit

In order to experiment the feasibility of statistical MT for English- Indonesian, we build a
prototype of SMT Toolkit using the available Open Source Package. We use SRILM to
build the n-gram language model and translation model, experiment with PHARAOH in
the initial design stage and subsequently use MOSES (Koehn, 2007) as a beam search
decoder.

The decoder was originally developed for the phrase model proposed by Marcu and
Wong. At that time, only a greedy hill-climbing decoder was available, which was
insufficient for our work on noun phrase translation (Koehn, 2003). The decoder
implements a beam search and is roughly similar to work by Tillmann and Och. In fact,
by reframing Och's alignment template model as a phrase translation model, the decoder
is also suitable for his model, as well as other recently proposed phrase models. The
phrase-based decoder is developed by employing a beam search algorithm, similar to the
one used by Jelinek for speech recognition. The Bahasa Indonesia output sentence is
generated left to right in form of hypotheses.

The development objective on our work is to build a statistical machine translation
toolkit and make it available to researchers in our PANL community. Therefore, this
SMT toolkit would include corpus preparation software, bilingual text training software,
and run time decoding software for performing actual translation. All these software
components are based on Open Source Software (OSS).

2.3 Future Systems: Symbolic-Statistical Machine translation

The machine translation system will consist of the above modules. Statistical method or
combination of statistical and example-based method (using the parallel corpus) will be
employed.

The machine translation system will consist of the following modules:

 Morphological analyzer/POS Tagger

 The derivational morphology of Bahasa Indonesia, particularly that of verbal
morphology, is quite complex, and therefore requires careful analysis. Existing
Indonesian morphological literatures will be surveyed and compared with the empirical
evidence as found in the corpus. The morphological analysis will be built using statistical
methods such as n-gram or HMM.

 Shallow parser/ Syntactic parser

 Completion of the morphological analysis will enable the development of phrase
parser. This parser will decide noun phrases, verb phrases, adjective phrases, etc. in a
sentence. This parser will be built using statistical methods also. Furthermore, a robust
syntactic parser can be build using output of the shallow parser to decide syntactical
structure of a sentence, i.e., which part of a sentence is the subject, predicate, object.

 Phrase Reordering System

 This module will perform transformation of phrase structure from Indonesian DM to
English MD, to enable correct translation of noun phrase and adjective phrase. This
module will prepare the input sentence or files prior of translation process, to enable
better translation quality

 Generation system:
This module will produce target sentences (Indonesian or English) based on an
intermediate representation created by the statistical MT.

Additional conditional reordering models may be built. These are conditioned on
specified factors (in the source and target language), and learn different reordering
probabilities for each phrase pair (or just the foreign phrase). Possible configurations are

1. MSD vs. Monotonicity. MSD models consider three different orientation
types: monotone, swap, and discontinuous. Monotonicity models consider
only monotone or non-monotone, in other words swap, and discontinous are
lumped together.

2. f vs. fe. The model may be conditioned on the Indonesian phrase (f), or on both
the Indonesia phrase and English phrase (fe).

3. Unidirectional vs. Bidirectional. For each phrase, the ordering of itself in respect
to the previous is considered. For bidirectional models, also the ordering of the
next phrase in respect to the currect phrase is modeled.

We will also perform baseline evaluations. These evaluations would consist of both
objective measures on statistical model perplexity and subjective measures on human
judgments of quality, as well as attempts to correlate the two. We would also produce
learning curves that show how system performance changes when we vary the amount of
bilingual training text.

3. Implementation of English-Indonesian SMT

3.1 Hardware Preparation
In developing the SMT we will use a server with the computing capacity to process a big
translation table, minimum of 1.3 GHz. The SMT decoder requires memory of 2 GB. We
opt to select the latest server technology which is based on dual core or quad core CPU.
We use the memory system which can handle error rate correction. The network adapter
must have 10/100/1000 Mbps bandwidth access, which is highly important when running
parallel processes for servicing multiple client.

3.2 Data Preparation
In order to prepare the SMT for English-Bahasa Indonesia, we need to train the toolkit
using a new language pairs. The need for bilingual texts for training is compulsory for the
SMT decoder; hence we use the collected corpus PANL-BPPT-ID-EN (parallel corpus)

3.3 Language Model Preparation

The tool that we use is SRILM (SRI Language Modeling). SRILM is a toolkit for
building and applying statistical language models (LMs), primarily for use in speech
recognition, statistical tagging and segmentation, and machine translation. It has been
under development in the SRI Speech Technology and Research Laboratory since 1995.
The toolkit has also greatly benefited from its use and enhancements during the Johns
Hopkins University/CLSP summer workshops in 1995, 1996, 1997, and 2002. This tool
available in http://www.speech.sri.com/projects/srilm/download.html

Here is a brief guide on how to build the SRI LM tools and associated libraries.

1. Unpack. This should give a top-level directory with the subdirectories listed in

README, as well as a few documentation files and a Makefile.

 For an overview of SRILM, see the paper in doc/paper.ps

 For reference information, look in man/html

2. Set the SRILM variable in the top-level Makefile to point to this top-level

directory (an absolute path).

3. You need a SunOS (Sparc or i386), IRIX 5.x, Alpha OSF, Linux i686, Mac OSX,

or CYGWIN platform to compile out of the box. For other OS/cpu combinations

you will have to modify the sbin/machine-type script to detect (and name) the

Sources of
Bilingual
Parallel Text

Database
Translations

Articles
Translation

Dictionary/
Glossary

Internet
News

Interpreter
e-Book

Pre-processing
- Format Filtering
- Transcription
- Document Align
- Segment Align

Parallel Corpus
(PANL-BPPT)

Translation
Model

Bilingual
Data

Language
Model

Monolingual
Data

TM-LM
Statistical

Model

Figure 2. Data Processing of Statistical Model for SMT

platform type, and create a file common/Makefile.machine. <platform> that

defines platform-dependent makefile variables.

As a workaround, the MACHINE_TYPE variable can also be set on the make

comand line

 make MACHINE_TYPE=foo ...

in which case no changes to sbin/machine-type are needed.

Some platform-specific notes may be found in doc/README.<platform>.

Even on the known platforms you might have to modify variables defined in

common/Makefile.machine.<platform> . Candidates for changes are

 CC, CXX: choose compiler or compiler version. For example, you might

 have to specify a directory path to the compiler driver.

 DEMANGLE_FILTER: If the "c++filt" program is not installed on your system

 set this variable to empty.

 TCL_INCLUDE, TCL_LIBRARY: to whatever is needed to find the Tcl header

 files and library. If Tcl is not available, set NO_TCL=X

 and leave the above variables empty.

It is recommended that you record changes to platform dependent variables

in common/Makefile.site.<platform> and leave Makefile.machine.<platform>

unchanged. That makes it easier to upgrade SRILM to future releases

(just copy common/Makefile.site.<platform> to a new installation).

4. You need the following free third-party software to build SRILM:

 - gcc version 3.4.3 or higher

 (older versions might work as well, but are no longer supported).

SRILM is occasionally tested with other compilers, see the portability notes in

the CHANGES file.

 - GNU make

 - John Ousterhout's Tcl toolkit, version 7.3 or higher

 (this is currently used only for some test programs, but is needed

 for the build to go through without manual intervention).

 - Additional platform-dependent prerequisites are mentioned in

 doc/README.<os>-<machinetype>, e.g., doc/README.windows-cygwin.

 The following tools are needed at runtime only:

 - GNU awk (gawk), to interpret many of the utility scripts

 - gzip, to read/write compressed files

 - bzip2, to read/write .bz2 compressed files (optional)

 - p7zip, to read/write .7z compressed files (optional)

For Windows 9x or NT, you will need the CYGWIN UNIX compatibility

environment, which includes all of the above. The MinGW andVisual C

platforms will also work, but with some loss of functionality. See

doc/README.windows-* for more information.

Links to these packages can be found on the SRILM download page

(http://www.speech.sri.com/projects/srilm/download.html).

5. In the top-level directory, run

 gnumake World or

 make World (if the GNU version is the system default)

 This will create the directories

 bin/

 lib/

 include/

build everything and install public commands, libraries and headers in these

directories. Binaries are actually installed in subdirectories indicating the

platform type. To create binaries for a platform that is not the default on your

system,

use make MACHINE_TYPE=xxx, e.g.

make MACHINE_TYPE=i686-m64 World # 64-bit binaries for Linux

make MACHINE_TYPE=msvc World # MS Visual C++ on Windows

6. The result of the above should be a fair number of .h and .cc files in include/,

libraries in lib/$MACHINE_TYPE, and programs in bin/$MACHINE_TYPE. In your

shell, set the following environment variables:

 PATH add $SRILM/bin/$MACHINE_TYPE and $SRILM/bin

 MANPATH add $SRILM/man

7. To test the compiled tools, change into the $SRILM/test directory and run

 gnumake all

This exercises the most important (though not all) functionality in SRILM and

compares the results to reference outputs. If discrepancies are reported, examine

the output files in $SRILM/test/output and compare them to the corresponding

files in $SRILM/test/reference.

8. After a successful build, clean up the source directories of object and binary files

that are no longer needed:

 gnumake cleanest

9. (Optional) To build versions of the libraries and executables that are optimized for

space rather than speed, run

 gnumake World OPTION=_c

 gnumake cleanest OPTION=_c

The libraries will appear in ${SRILM}/lib/${MACHINE_TYPE}_c, with

executables in ${SRILM}/bin/${MACHINE_TYPE}_c . The data structures used

in these versions use sorted arrays rather than hash tables, which wastes less

memory, but is also somewhat slower. The directory suffix "_c" stands for

"compact".

Other versions of the binaries can be built in a similar manner.

The compile options currently supported are

 OPTION=_c "compact" data structures

 OPTION=_s "short" count representation

 OPTION=_l "long long" count representation

 OPTION=_g debuggable, non-optimized code

 OPTION=_p profiling executables

10. Recent versions of gawk may not perform correct floating-point arithmetic

unless either

 LC_NUMERIC=C or

 LC_ALL=C

is set in the environment. This affects many of the scripts in utils/.

11. Be sure to let me know if I left something out.

In this experiment, we use SRILM to functions as follows (see Figure 3):

 Produce the n-gram of a corpus

 Train the language model from the n-gram

 Calculate the perplexity of data test using the trained language model

Figure 2. Step-by Step Usage of SRILM

In order to produce the Language Model (LM), we use the following command line

instructions:

% ngram-count -text CORPUS_FILE -lm SRILM_FILE

The following is the sample of n-gram count which is obtained from 50.000 sentences

of monolingual corpus of English:

\data\
ngram 1=39993
ngram 2=60900
ngram 3=40952

\1-grams:
-1.362939 </s>
-99 <s> -0.5451546
-5.881724 aaaf
-4.896565 aachen -0.06532428
-5.881724 aaj
-5.881724 aala
-5.881724 aamel
-5.881724 aamir
-5.881724 aan
-5.414177 aap

Training corpus ngram corpus Count file

Lexicon ngram count LM

Test data ngram ppl

step 1

step 2

step 3

-5.235515 aarhus -0.1352619
-5.001301 aaron -0.1859574
-5.881724 aarp
-5.881724 aatef
-5.881724 aater
-4.787421 ababa -0.04195464
-5.881724 abac
-5.881724 abad
-5.881724 abakr
-4.511215 abandon -0.3002984
-5.881724 abandonall
-4.524179 abandoned -0.1512827
-5.329418 abandoning -0.308226
-5.626085 abandonment
-5.881724 abarge
-5.881724 abassan
-5.881724 abated
-5.881724 abating
-5.881724 abattoir
-5.881724 abayas
-5.881724 abba
-5.881724 abbar
-3.696341 abbas -0.2815464
-5.881724 abbasand
-5.626085 abbassan
-5.881724 abbey
-5.626085 abbiati
-5.881724 abbreviated
-4.741663 abc -0.07178178
-5.626085 abd
-5.414177 abdallah
-5.881724 abdalmahmood
-4.595536 abdel -0.3050831
-5.881724 abdelaziz
-5.881724 abdelhak
-5.881724 abdelkader
.
.
.
\end\

3.4 Translation Model Preparation

In the following, we describe in brief on how we prepare Translation Model (English-
Indonesia). There is 2 sub directories, as follows:

- Directory bin, which contain GIZA++ (packages which implement the IBM
model) and mkcls which categorize the words into probability classes.

- Directory corpus, which corpus data is placed for training and building
translation model.

In these directories, there are Perl scripts available to extract phrase table. In order to

build the phrase translation table, we use additional scripts (as attached in our report on
Translation, Alignment and Other Issues Related to Corpus Development). The following
command is use to build the translation model:

train-phrase-model.perl –root-dir . –f eng –e ind

--corpus corpus/data20000

4. Evaluation and Related Issues to SMT Design

4.1 Evaluation of Translation Quality

We believe more work on evaluation is called for. There was insufficient time during the
Phase 1.2 to fully evaluate the quality of output from the Toolkit prototype using Pharaoh
Decoder, but we record some of our thoughts here.
 Most MT evaluation regimes involve collecting human judgments over many
sentences and these regimes are expensive for individual researchers. In the commercial
world, the market provides a constant evaluation of translation software, albeit one that
seems currently driven by factors other than output text quality. In the final analysis, there
is no measure that can substitute for user satisfaction. But this leaves the individual
researcher in a bind.
 It is ideal that human subjects fluent in both the source language and the target
language evaluate the material. Monolingual users of the target language alone are poorly
prepared to evaluate the content of the translation, despite reference translations. This
point is proven with the DARPA evaluations of 1000 when the quality of human
translations of variable quality, were also used for evaluation in an exam that asked
evaluators to answer questions on the content of a translated passage. A monolingual
evaluator is best suited for evaluating the fluency of the output, and not the content,
unless the content can really be assured, such as in treaties and other legal documents
where the translator has a very high incentive for ensuring that precise translations are
produced.
 Another concern that arises relates to the use of native speakers of the source
language and their capacity to determine the fluency of output in the target language, as
well as possible biases which allow them to find meaning in “word hash” output from
MT that a monolingual speaker might missing. In defining the scale for evaluation, we
aim to address this concern. Since the system is trained on texts with unique properties in
terms of lexicons used translation styles involved, and so on. We concluded that it was
reasonable to draw evaluation texts from the pre-training corpus. However, we strongly
emphasize that in no way is the system to be trained on texts that will later be used for
evaluation.
 The speech recognition community has largely focused on word -error recognition
rate, in the belief that, this figure will ultimately correlate with user satisfaction. And it is
easy to measure.
 In finding text for evaluation, there were several concerns length, context, and
novelty. Because of limits on the computational complexity of decoding and training the
corpora was stripped of sentences of length above a certain bound, originally 10 tokens.
This processed corpus was then used for extracting sentences for evaluation. In addition,

for the length of the entire evaluation, we suggest a test-bed of 100 sentences. As 100
sentences seem like a reasonably small amount of work for evaluators per evaluation, we
decided upon 1000 test sentences from the outset (out of 50,000 sentences in PANL-
BPPT corpus).

4.2 Training Set Size vs. Translation Quality

One question we had about statistical machine translation was how much data do we
need? Are sentence pairs enough? If you go from one million sentence pairs to two
million, how much improvement will you see? We imagined that a lot of data is useful, if
you’ve never seen the phrase “real estate” before in your parallel corpus, then you
probably aren’t going to translate it correctly. It is mandatory in the machine learning
community to plot data size on the x axis vs. performance on the y axis, depicting a
learning curve of SMT.

 This is particularly important in natural language processing, where we can
frequently purchase more data. The learning curve leads naturally to a second question
what to plot on the y axis. Machine translation is notoriously difficult to evaluate. It
shares this notoriety with other tasks that involve generating human language as opposed
to interpreting it. It is possible to evaluate a speech recognizer by counting word errors,
not so with a speech synthesizer. Likewise, it is easier to say whether a language
interpretation system got the right syntactic structure than to say whether a generation
system produced a good syntactic structure.

 Machine translation involves both interpretation and generation. Following many
of the evaluation regimes that have been proposed for MT, we decided to go with either a
simple scoring mechanism or a simple relative ranking of translations from different
systems configurations.

 Researchers can try discard and adopt many new ideas without involving human
subjects. They can also compare results on common test data sets. As mentioned above,
even this is difficult to do in translation. Interestingly, many speech researchers find it
convenient to evaluate their ideas with respect to perplexity: a measure of how well a
statistical model fits or explains the data. For example, in language modeling, the goal is
to produce a program that assigns a probability P(e) to every string of words e*. All these
probabilities sum to 1 so there is only so much to go around. It is possible to ask how
good a language model is without making reference to word error rate or any other task
level measure. One simply asks for the particular number P(e) that a particular
instantiated model assigns to a particular text. If the text is good English, we expect P(e)
to be high if the text is bad English, we expect P(e) to be low. If we observe a language
model which is assigning probabilities the other way around, then it probably isn’t a very
good language model.

 It is reasonable to ask for the P(e) that a model assigns to the text it was trained
on. In this case, a memorizing program would do very well, by assigning P(e|f). However,
this program would by definition assign P(e|f) to every other text e* and this will lead to a
very poor word error rate. Therefore a more reasonable evaluation is test set perplexity,
which is related to the probability that the model assigns to a previously unseen test
English text. The language model must lay bets on all kinds of strings. If it concentrates

its bets on certain subset of strings, then it must hope that when the previously unseen text
is revealed it is to be found in that subset. Because all probabilities sum to 1, increasing
our bet on one string necessarily means decreasing our bet on some other string.

It is typical in language modeling to bet at least something on every conceivable
string e. If we accidentally bet nothing on e, then our P(e) would be zero, and our
perplexity would be infinite. So, if a language model uses previously observed word
 pair frequencies in constructing a probability score P(e) for a new string, it will
typically smooth these frequencies so as to accept a string that contains novel word pairs.

 In statistical MT, a key component is the translation model. We can do the same
thing. An instantiated translation model, such as learned by GIZA, assigns a probability to
every pair of sentences. In this case, our previously unseen test data consists of sentence
pairs. Given a certain sentence e, a model will lay bets on various sentences. When the
actual translation is revealed in the test data, we can see whether the model bet a lot or a
little. We hope it bet a lot.

5. Future Work

The experts in translation have two differing approaches toward the translation concept:
universalism and monadic. We understood there is a possibility of “un-translation” which
is “translation fails – or un-translability occurs when it is impossible to build functionally
relevant features of the situation into contextual meaning of target language (TL) text.
Broadly speaking, the cases where this happens fail into two categories. Those where the
difficulty is linguistic, and those where it is cultural.

 We examine further the translability concept by taking into account that most
Asian language share very similar “culture” but different in language structure. We can
not enforce the system and structure to target language without “knowing” the language
itself. In this case, a rule-based system should be used as a preprocessing to enable the
structure of source language to approximate the structure of target language. For example,
in translating Indonesian-English, we need a rule-based system to transform the DM-MD
rule (Indonesian grammar rule for adjective phrase construction). This rule approximates
the order of noun and adjective phrase of Indonesian according to English noun or
adjective phrase. For example:

 MD DM
sebuah rumah besar -> a big house
 (a) (house) (big)
gunung biru itu -> the blue mountain
(mountain) (blue) (the)

In our future work, by implementing several modules as pre and post processors, it is
expected that statistical MT will perform better in translating English to Indonesian by
having a similar language structure. We described some of these approaches in the
following

In a research reported in (Al-Onaizan et al., 2000), an experiment was conducted on
Tetun- English translation with a small parallel corpus. The translation experiment has

been done by different groups including one using statistical machine translation. They
found that the human mind is very capable of deriving dependencies such as morphology,
cognates, proper names, etc. and that this capability is the crucial reason for the better
results produced by humans compared to corpus based machine translation. If a program
sees a particular word or phrase one thousand times during the training, it is more likely
to learn a correct translation than if it sees it ten times, or never. Because of this,
statistical translation techniques are less likely to work well when only a small amount of
data is given. (Callison-Burch and Osborne, 2003) propose a co-training method for
statistical machine translation using the multilingual European Parliament corpus.
Multiple translation models trained on different language pairs are used for producing
new sentence pairs. They are then added to the original corpus and all translation models
are retrained. The best improvements have been achieved after two or three training
rounds.

In (Nießen and Ney, 2004) the impact of the training corpus size for statistical
machine translation from German into English is investigated, and the use of a
conventional dictionary and morpho-syntactic information for improving the performance
is proposed. They use several types of word reordering as well as a hierarchical lexicon
based on the POS tags and base forms of the German language. They report results on the
full corpus of about sixty thousand sentences, on the very small part of the corpus
containing five thousand sentences and on the conventional dictionary only. Morpho-
syntactic information yields significant improvements in all cases and an acceptable
translation quality is also obtained with the very small corpus as well as using word
reordering information based on POS tags.

Reference

1. Jürgen Handke, The Structure of the Lexicon: Human Versus Machine, Walter de

Gruyter, 1995

2. Sonja Nießen and Hermann Ney. 2004. Statistical machine translation with scarce
resources using morpho-syntactic information. Computational Linguistics, 30(2):181–
204, June.

3. Brown et al, 1993 “The Mathematics of Statisti-cal Machine Translation: Parameter
Estimation”, P. Brown, S. Della Pietra, V. Della Pietra, R. Mer-cer. Computational
Linguistics, 19(2).

4. Chris Callison-Burch and Miles Osborne. 2003. Cotraining for statistical machine
translation. In Proc. Of the 6th Annual CLUK Research Colloquium, Edinburgh, UK,
January.

5. Knight, 1997 “Automating Knowledge Acquisi-tion for Machine Translation”, K.
Knight, AI Magazine, 18(4).

6. Y. Al-Onaizan, U. Germann, U. Hermjakob, K. Knight, P. Koehn, D. Marcu, K.
Yamada, “Translating with Scarce Resources”, AAAI-2000.

7. B. Pang, K. Knight, and D. Marcu. “Syntax-based Alignment of Multiple
Translations: Extracting Paraphrases and Generating New Sentences,” NAACL-HLT-
2003.

8. K. Papineni, S. Roukos, T. Ward, J. Henderson, F. Reeder, “Corpus-based
Comprehen-sive and Disagnostic MT Evaluation: Initial Ara-bic, Chinese, French,
and Spanish Results”, NAACL-HLT-2002.

9. Wikipedia SMT, http://en.wikipedia.org/wiki/, retrieved August 08

10. Aston, G. and Burnard, L. The BNC Handbook Edinburgh: Edinburgh University
Press., 1998

11. Serge Sharof “In the garden and in the jungle: comparing genres in the BNC and
Internet, http://corpus.leeds.ac.uk/serge/webgenres/colloquium/, Sept 2008

12. Garside, R., Leech, G., and McEnery, T. Corpus annotation: linguistic information
from computer text corpora, Harlow: Addison-Wesley Longman, 1997.

13. S. Vogel, H. Ney and C. Tillmann. 1996. HMM-based Word Alignment in Statistical
Translation. In COLING ’96: The 16th International Conference on Computational
Linguistics, pp. 836-841, Copenhagen, Denmark

14. P. Koehn, F.J. Och, and D. Marcu (2003). Statistical phrase based translation. In
Proceedings of the Joint Conference on Human Language Technologies and the
Annual Meeting of the North American Chapter of the Association of Computational
Linguistics (HLT/NAACL).

15. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B.
Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst.
2007. Moses: Open Source Toolkit for Statistical Machine Translation. ACL 2007,
Demonstration Session, Prague, Czech Republic

16. W. J. Hutchins and H. Somers. (1992). An Introduction to Machine Translation,
18.3:322. ISBN 0-12-36280-X

17. Sharon Goldwater and David McClosky. 2005. Improving stastistical machine
translation through morphological analysis. In Proceeding of the Conf. on Empirical
Methods for Natural Language Processing (EMNLP), Vancouver, Canada, October.

18. Adam Lopez and Philip Resnik. 2005. Improved HMM alignment for languages with
scarce resources. In 43rd Annual Meeting of the Assoc. for Computational
Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven
Machine Translation and Beyond, pages 83–86, Ann Arbor, MI, June.

