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1. Introduction 
 
In the era of globalization, communication among languages becomes much more 
important. Computer as a tool to help facilitating communication between different 
languages has been used more actively. People has been hoping that natural language 
processing and speech processing, which are branches of artificial intelligence with ICT 
(Information and Communication Technology), can assist in smoothening the 
communication among people with different languages. However, especially for 
Indonesian language, there were only few researches on computational linguistics, natural 
language processing and speech processing in the past. 

 
Machine translation (MT) is a sub-field of computational linguistics that investigates the 
use of computer software to translate text or speech from one natural language to another. 
At its basic level, MT performs simple substitution of words in one natural language for 
words in another. Using corpus techniques, more complex translations may be attempted, 
allowing for better handling of differences in linguistic typology, phrase recognition, and 
translation of idioms, as well as the isolation of anomalies. 
 

Despite its involvement in international projects, basic researches in MT are still 
underdeveloped. For instance, there is no available corpus (collection of linguistic data; 
written, spoken, or a mixture of the two) – textual corpus for natural language processing 
researches or spoken corpus for speech processing researches – which is vital and very 
basic mean to conduct a research in the field of MT, natural language processing or 
speech processing. In addition, researchers need basic resources to study the morphology 
and syntax of Bahasa Indonesia for doing further researches. By using a corpus, one may 
study the possible structure of sentences (both formal and informal language), words 
frequency, relation among phrases, etc. In short, information contained in a linguistic 
corpus is very useful and crucial for doing a research in natural language processing or 
speech processing. Based on the fact that there is no corpus available and its crucial 
importance, the first phase of this project is to build large bilingual Indonesian-English 
corpus, which in turn are used to build ready-to-use modules/systems for the statistical 
machine translation (SMT) of English to Bahasa Indonesia.  

 

As with other parts of the world, Internet has connected Indonesian user with the rest of 
the world. Internet has been providing wealthy information on seemingly every thing. 
However, information in Internet is mostly written in English language. The average 
English proficiency among Indonesians, particularly those living in rural areas and small 



towns is very low. For many Indonesian people, writing in English is still an obstacle. It 
will be very useful if there is a tool such as machine translation system to help translating 
English into Indonesian texts and vice versa. Statistical machine translation tries to 
generate translations using statistical methods based on bilingual text corpora. The term 
parallel corpora are typically used in linguistic circles to refer to texts that are translations 
of each other. In order to exploit a parallel text, some kind of text alignment, which 
identifies equivalent text segments (approximately sentences), is a prerequisite for 
analysis.  

 
The goal of statistical machine translation is to translate a source language sequence into 
a target language sequence by maximizing the posterior probability of the target sequence 
given the source sequence. In state-of-the-art translation systems, this posterior 
probability usually is modeled as a combination of several different models, such as: 
phrase-based models for both translation directions, lexicon models for translation 
directions, target language model, phrase and word penalties, etc. Probabilities that 
describe correspondences between the words in the source language and the words in the 
target language are learned from a bilingual parallel text corpus and language model 
probabilities are learned from a monolingual text in the target language. The larger the 
available training corpus used for translation model, then the better the performance of a 
translation system. 
 
The benefits of statistical machine translation over traditional paradigms that are most 
often cited are the following: 
 

• Better use of resources 
There is a great deal of natural language in machine-readable format. Generally, 
SMT systems are not tailored to any specific pair of languages. Rule-based 
translation systems require the manual development of linguistic rules, which can 
be costly, and which often do not generalize to other languages. 
 

• More natural translations 
The ideas behind statistical machine translation come out of information theory 
Essentially, the document is translated on the probability p(e|f) that a string e in 
native language (for example, English) is the translation of a string f in foreign 
language (such as Bahasa Indonesia). Generally, these probabilities are estimated 
using techniques of parameter estimation. 
 
 

2.  Development Framework 
There are two important components in forming machine translation system where both 
this process is important and each other interconnected component, first is the corpora 
and secondly is Statistical Machine Translation (SMT). The Final Design Framework of 
English-Indonesia SMT is given in Figure 1. This development framework differs from 
the one that we reported in the Research Report on Initial Design SMT Framework 
(Report No.3 PANL Report BPPT Initial Design Framework SMT.pdf) 

 
 



  

  
 
 

 

Statistical machine translation (SMT) is a machine translation paradigm where 
translations are generated on the basis of statistical models whose parameters are derived 
from the analysis of bilingual text corpora. The statistical approach contrasts with the 
rule-based approaches to machine translation as well as with example-based machine 
translation. 
 
The first ideas of statistical machine translation were introduced by Warren Weaver in 
19491, including the ideas of applying Claude Shannon's information theory. Statistical 
machine translation was re-introduced in 1991 by researchers at IBM's Thomas J. Watson 
Research Center2 and has contributed to the significant resurgence in interest in machine 
translation in recent years. Nowadays it is by far the most widely-studied machine 
translation method. 
 
Machine translation (MT) is a sub-field of computational linguistics that investigates the 
use of computer software to translate text or speech from one natural language to another. 
At its basic level, MT performs simple substitution of words in one natural language for 
words in another. Using corpus techniques, more complex translations may be attempted, 
allowing for better handling of differences in linguistic typology, phrase recognition, and 
translation of idioms, as well as the isolation of anomalies. 
 
Current machine translation software often allows for customization by domain or 
profession (such as news) - improving output by limiting the scope of allowable 

                                                 
1  W. Weaver (1955). Translation (1949). In: Machine Translation of Languages, MIT Press, Cambridge, MA. 
2  P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer (1993). The mathematics of statistical machine 
translation: parameter estimation. Computational Linguistics, 19(2), 263-311. 

 
 

Moses SMT 
Decoder 

 

Indonesian-
English Parallel 
Corpus 
(PANL-BPPT-ID-EN) 

Indonesian 
Monolingual 
Corpus  
(PANL-BPPT-ID) 

English 
Monolingual 
Corpus 
(PANL-BPPT-EN) 

 
SRILM 
Giza++ 

Source 

Target 

Figure 1. Bidirectional Indonesian-English Development Framework 



substitutions. This technique is particularly effective in domains where formal or 
formulaic language is used. It follows then that machine translation of government and 
legal documents more readily produces usable output than conversation or less 
standardized text. 
 
Improved output quality can also be achieved by human intervention: for example, some 
systems are able to translate more accurately if the user has unambiguously identified 
which words in the text are names. With the assistance of these techniques, MT has 
proven useful as a tool to assist human translators, and in some cases can even produce 
output that can be used "as is". However, current systems are unable to produce output of 
the same quality as a human translator, particularly where the text to be translated uses 
casual language. 
 
Statistical machine translation tries to generate translations using statistical methods 
based on bilingual text corpora. The term parallel corpora are typically used in linguistic 
circles to refer to texts that are translations of each other. And the term comparable 
corpora refer to texts in two languages that are similar in content, but are not translations. 
In order to exploit a parallel text, some kind of text alignment, which identifies equivalent 
text segments (approximately sentences), is a prerequisite for analysis.  
 
To produce a good translation as does human translation hence needed a good bilingual 
text corpus. There is many sources providing various article type to be made by collection 
of corpus, however require to be conducted election to written article use good structure 
method. We still find some articles not in good sentence structure, so that to make parallel 
sentence still needed repairs.  
 
2.1. Corpora 
 
As a language is dynamic and constantly evolving, it is essential that the constructed 
linguistic resources are based on empirical evidence. To support this, the first phase of the 
work involves the compilation of corpora, i.e. monolingual collection of electronic texts 
in Bahasa Indonesia and bilingual collection of parallel English and Indonesian texts. The 
choice of documents is affected by the intended coverage of the linguistic resources.  

• PANL-BPPT-ID Monolingual Indonesian corpus (Bahasa Indonesia) 

The collection is built on 500,000 words corresponding to around 50,000 
sentences in Bahasa Indonesia. In order to create the target language model 
(Indonesia language model) more accurately, it is planned that the PANL-BPPT 
monolingual corpus will be combined with ANTARA corpus which consist of 
approximately 2,500,000 sentences. The corpus will contain formal and informal 
words, and various sentence structures. 

• PANL-BPPT-EN Monolingual English corpus (Translation of Indonesian corpus) 

It is planned that we will use the result of translation of PANL-BPPT-ID to 
develop English monolingual corpus which contains various domain. It will 
consist of approximately 50,000 sentences. 

 

 



• PANL-BPPT-ID-EN Parallel corpus (Bahasa Indonesia and English) 

The parallel corpus (PANL-BPPT-ID-EN) is constructed through sentence 
alignment process of Indonesia and English Monolingual Corpus. The total 
collection will contain 500,000 words of Indonesian, approximately more than 
50,000 sentences for each language, making a total of 100,000 sentences in both 
languages. 

 

2.2  Statistical Machine Translation Toolkit 

The toolkit is a complete out-of-the-box translation system for academic research. It 
consists of all the components needed to preprocess data, train the language models and 
the translation models. It also contains tools for tuning these models using minimum error 
rate training (Och 2003) and evaluating the resulting translations using the BLEU score 
(Papineni et al. 2002). 
 
Moses uses standard external tools for some of the tasks to avoid duplication, such as 
GIZA++ (Och and Ney 2003) for word alignments and SRILM for language modeling. 
Also, since these tasks are often CPU intensive, the toolkit has been designed to work 
with Sun Grid Engine parallel environment to increase throughput. In order to unify the 
experimental stages, a utility has been developed to run repeatable experiments. This uses 
the tools contained in Moses and requires minimal changes to set up and customize. 
 
The toolkit has been hosted and developed under sourceforge.net since inception. Moses 
has an active research community and has reached over 1000 downloads as of 1st March 
2007. The main online presence is at http://www.statmt.org/moses/ where many sources 
of information about the project can be found. Moses was the subject of this year’s Johns 
Hopkins University Workshop on Machine Translation (Koehn et al. 2006). 
 
The decoder is the core component of Moses. To minimize the learning curve for many 
researchers, the decoder was developed as a drop-in replacement for Moses, the popular 
phrase-based decoder. In order for the toolkit to be adopted by the community, and to 
make it easy for others to contribute to the project, we kept to the following principles 
when developing the decoder: 
 

• Accessibility 
• Easy to Maintain 
• Flexibility 
• Easy for distributed team development 
• Portability 

 

The decoder was originally developed for the phrase model proposed by Marcu and 
Wong. At that time, only a greedy hill-climbing decoder was available, which was 
insufficient for our work on noun phrase translation (Koehn, 2003). The decoder 
implements a beam search and is roughly similar to work by Tillmann  and Och. In fact, 
by reframing Och's alignment template model as a phrase translation model, the decoder 
is also suitable for his model, as well as other recently proposed phrase models. The 
phrase-based decoder is developed by employing a beam search algorithm, similar to the 



one used by Jelinek for speech recognition. The Bahasa Indonesia output sentence is 
generated left to right in form of hypotheses. 

The development objective on our work is to build a statistical machine translation toolkit 
and make it available to researchers in our PANL community. Therefore, this SMT 
toolkit would include corpus preparation software, bilingual text training software, and 
run time decoding software for performing actual translation. All these software 
components are based on Open Source Software (OSS).  

 

3. Implementation of Bidirectional English-Bahasa Indonesia 
Statistical Machine Translation 

 
3.1 Hardware Preparation 
In developing the SMT we will use a server with the computing capacity to process a big 
translation table, minimum of 1.3 GHz. The SMT decoder requires memory of 2 GB. We 
opt to select the latest server technology which is based on dual core or quad core CPU. 
We use the memory system which can handle error rate correction. The network adapter 
must have 10/100/1000 Mbps bandwidth access, which is highly important when running 
parallel processes for servicing multiple client. The configuration is as follows: 
 
 

Processor (max) Up to 2 quad-core Intel® Xeon® X5500 series 
with Intel QuickPath Interconnect (QPI) technology, 
up to 2.93 GHz and up to 1333 MHz front-side bus 

Number of processors 
(std/max) 

1/2 

Cache (max) Up to 8 MB 
Memory1 (max) 1 GB, 2 GB, 4 GB or 8 GB DDR-3 RDIMMs with 16 

slots up to 128 GB maximum memory 
Expansion slots (I/O) 4 PCI-Express (4x8) Gen 2 slots: 2x8 full-length, 

full-height; 1x8 half-length, full-height; 1x8 low-
profile. 4x8 are convertible to 2x16 via optional 
risers. Also, 2x PCI-X via optional risers 

Disk bays (total/hot-
swap) 

Up to twelve 2.5" hot-swap Serial Attached SCSI 
(SAS)/Serial ATA (SATA) HDDs or solid state drives 
(SSDs) 

Maximum internal 
storage1,2 

Up to 3.6 TB hot-swap SAS or up to 3.6 TB hot-
swap SATA or up to 600 GB hot-swap SSD storage 

Network interface Integrated 2 ports, plus 2 ports optional Gigabit 
Ethernet 

Power supply (std/max) 1/2; 675 W each 
Hot-swap components Power supplies, fan modules, disks 
RAID support Hardware RAID-0, -1, optional RAID-5, -6 

 
 
 
3.2 Data Corpus Preparation 
In order to prepare the SMT for English-Bahasa Indonesia, we need to train the toolkit 
using a new language pairs. The need for bilingual texts for training is compulsory for the 
SMT decoder; hence we use the collected corpus PANL-BPPT (parallel corpus). The 
description of Corpus files can be found in the Deliverables (provided in a CD ROM) 
organize into: 
 



 
1 Corpus 100K Phase 1 

1.1. PANL-BPPT-ID-100K-1.xml  
1.2. PANL-BPPT-EN-100K-1.xml,  
1.3. PANL-BPPT-Project-100K-1-omegaT.tmx 
 

2. Corpus 150K Phase 1 
2.1. PANL-BPPT-ID-150K-1.xml 
2.2. PANL-BPPT-EN-150K-1.xml 
2.3. PANL-BPPT-Project-150K-1-omegaT.tmx 
 

3. Corpus 150K Phase 2 
3.1. PANL-BPPT-ID-150K-2.xml,  
3.2. PANL-BPPT-EN-150K-2.xml,  
3.3. PANL-BPPT-Project-150K-2-omegaT.tmx 
 

4. Corpus 100K Phase 2 
4.1. PANL-BPPT-ID-100K-2.xml 
4.2. PANL-BPPT-EN-100K-2.xml 
4.3. PANL-BPPT-Project-100K-2-omegaT.tmx 

 
 
3.3 Language Model Preparation 
The tool that we use is SRILM (SRI Language Modeling). SRILM is a toolkit for 
building and applying statistical language models (LMs), primarily for use in speech 
recognition, statistical tagging and segmentation, and machine translation. It has been 
under development in the SRI Speech Technology and Research Laboratory since 1995. 
The toolkit has also greatly benefited from its use and enhancements during the Johns 
Hopkins University/CLSP summer workshops in 1995, 1996, 1997, and 2002. This tool 
available in http://www.speech.sri.com/projects/srilm/download.html 
 
 

 
 
 

Figure 2.  Data Processing of Statistical Model for SMT 
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Install SRILM in CentOS 64 bit and create folder srilm 
Instalation package gcc for CentOS 64 bit, the syntax in the command line are 
# yum install gcc4-c++-4.1.2-44.EL4.x86_64.rpm gawk gzip csh 
 
# mkdir srilm 
# cd srilm  

 
Extrack SRILM 
$ tar -xzvf srilm.tgz 

 
Edit Makefile 
$ vi Makefile 
### 
# SRILM = /usr/.../.../.../devel  
MACHINE_TYPE 
### 
SRILM = /home/.../.../Sources/srilm  
MACHINE_TYPE = i686-m64 
### 
 
 

Move to common folder 
cd common 
 

edit Makefile.machine.i686-m64 
### 
CC = /usr/bin/gcc $(GCC_FLAGS) 
CXX = /usr/bin/g++ $(GCC_FLAGS) -DINSTANTIATE_TEMPELATES 
. 
. 
. 
TCL_INCLUDE =  
TCL_LIBRARY =  
NO_TCL = 1 
### 
 

Move to srilm folder 
cd ../srilm 
 

Type the command and run it  
make World 
   

Type the command   
add SRILM to global PATH variable. 
export PATH=/home/.../.../Sources/srilm/bin/i686-m64:/home/.../.../Sources/srilm/bin:$PATH 
 

Move to folder test 
cd test 
 

Type the command   
make all 
        

And we are done with SRILM! 
 
Install SRILM in Ubuntu 9.04 and create folder srilm 
Instalation package gcc for Ubuntu 9.04, the syntax in the command line are 
$ sudo apt-get install g++ make gawk gzip tcl8.5 tcl8.5-dev csh 
 
$ mkdir srilm 
$ cd srilm  
 

Extrack SRILM 
$ tar -xzvf srilm.tgz 
$ edit Makefile 



 

Edit Makefile 
### 
# SRILM = /usr/.../.../.../devel  
MACHINE_TYPE 
### 
SRILM = /home/-path-to-/srilm 
MACHINE_TYPE = $ (shell $(SRILM)/sbin/machine-type) 
### 
 

Move to common folder 
cd common 
 

edit Makefile.machine.i686 
### 
CC = /usr/bin/gcc $(GCC_FLAGS) 
CXX = /usr/bin/g++ $(GCC_FLAGS) -DINSTANTIATE_TEMPELATES 
. 
. 
. 
TCL_INCLUDE = -I/usr/include/tcl8.5/ 
TCL_LIBRARY = /usr/lib/libtcl8.5.so 
### 
 
Move to srilm folder 
$ cd ../srilm 
$ make World 

 
Type the command   
add SRILM to global PATH variable. 
export 
PATH=/home/.../.../sources/srilm/bin/i686:/home/.../.../Sources/srilm/bin:$PATH 

 
Move to folder test 
cd test 
make all  

And we are done with SRILM! 
 

Install Giza++  
GIZA++ is a statical machine translation toolkit that is used to compute word alignments 
between two sentence aligned corpora. This package also contains the source for the 
mkcls tool which generates the word classes necessary for training some of the alignment  
models. 
 
mkcls is a tool to train word classes by using a maximum-likelihood-criterion. The 
resulting word classes are especially suited for language models or statistical translation 
models. (http://code.google.com/p/giza-pp/) 
 
Installation Giza on CentOS 64 bit 
Current version will compiled with newer gcc4-c++-4.1.2 compilers which are standard on 
modern computer system, 
 
Download giza-pp-v1.0.3.tar.gz and extract it 
# tar –xzvf giza-pp-v1.0.3.tar.gz 
# cd GIZA++-v2/ 

 



Edit Makefile 
### 
CXX = g++ ---> CXX = g++4 

 
Then erase -DBINARY_SEARCH_FOR_TTABLE 
 
Move to folder gizapp 
# cd ../gizapp 
# make  

  
Copy GIZA++ and mkcls to a bin location for Moses Scripts in /home/.../.../Sources/ 
 
Create folder bin 
# mkdir -p bin 
# cp GIZA++-v2/GIZA++ bin/ 
# cp GIZA++-v2/snt2cooc.out bin/ 
# cp mkcls-v2/mkcls bin/ 

 
Both GIZA++ and mkcls will be called by Moses training scripts. 
And we are done with Giza++! 
 
 
Installation Giza on Ubuntu 9.04 
Current version will compiled with newer g++-4.x compilers which are standard on 
modern computer system, 
 
Move to folder Giza++-V2 
$ cd GIZA++-v2/ 

 
Edit Makefile 
### 
CXX = g++ ---> CXX = g++-4.1 
then errase -DBINARY_SEARCH_FOR_TTABLE 
### 

 
Move to folder gizapp 
$ cd ../gizapp 
$ make  
       

Copy GIZA++ and mkcls to a bin location for Moses Scripts in /home/.../.../Sources/ 
$ mkdir -p bin 
cp GIZA++-v2/GIZA++ bin/ 
cp GIZA++-v2/snt2cooc.out bin/ 
cp mkcls-v2/mkcls bin/ 

 
Both GIZA++ and mkcls will be called by Moses training scripts and we are done with 
Giza++! 
 
In this experiment, we use SRILM to functions as follows (see Figure 3): 

• Produce the n-gram of a corpus 
• Train the language model from the n-gram 
• Calculate the perplexity of data test using the trained language model 

 



 
          

Figure 3. Step-by Step Usage of SRILM 

 

Build Language Model 
The most important command of the SRILM toolkit is the ngram-count tool which counts 
ngrams and estimates language models. There exist several command line switches to 
fine-tune the resulting language model. A sorted 4-gram language model from a given 
English corpus in en.corpus can be created using the following command: (Christian 
Federman, 2007) 
 
Type the command   
$ /path-to-srilm/bin/i686-m64/ngram-count -order 4 -interpolate -kndiscount -
text working-dir/lm/file –lm working-dir/lm/file.lm 
 

The command line switches are explained below: 
• -order n sets the maximal order (or length) of n-grams to count. This also 

determines the order of the language model. 
• -interpolate causes the discounted n-gram probability estimates at the specified 

order n to be interpolated with estimates of lower order. 
• -kndiscount activates Chen and Goodman’s modified Kneser-Ney discounting for 

ngrams. 
• -text specifies the source file from which the language model data is estimated. 

This file should contain one sentence per line, empty lines are ignored. 
• -lm specifies the target file to which the language model data is written. 

 

Here is Language Model with SRILM toolkit 4-gram 
 

\data\ 
ngram 1=29682 
ngram 2=232779 
ngram 3=47994 
ngram 4=26847 
 
 
-5.065517 considerations -0.1159884 
-5.239327 considerd -0.1159884 
-3.804326 considered -0.2757038 
-3.92718  considering -0.2303499 
-4.269085 considers -0.1523835 
-4.269085 consist -0.7713577 
-4.204758 consisted -0.7038553 



-4.964279 consistency -0.1159884 
-4.344625 consistent-0.3910371 
-4.819496 consistently -0.1159884 
-4.175847 consisting -1.047205 
-3.828781 consists -1.201482 
-5.065517 console -0.1159884 
-5.239327 consoles -0.1159884 
-5.239327 consolidate -0.1159884 
-4.624427 consolidated -0.1740036 
-5.065517 consolidating -0.1159884 
-4.43613  consortium -0.1541466 
-5.239327 consorzio  -0.1159884 
-4.964279 conspiracies -0.1159884 
 
 
\2-grams: 
-3.15486  many component 
-2.601195 many computer 
-3.190189 many conglomerates 
-3.198194 many considerations 
-3.184963 many constraints 
-3.193709 many continents 
-3.193709 many cooperating 
-3.199374 many copyrights 
-1.748011 many countries -0.03104825 
-3.181513 many critics 
-3.199374 many crn 
. 
. 
. 
 
-3.198194 many exemptions 
 
 
\3-grams: 
-1.727292 points to eat 
-0.370703 points to rp -0.03852752 
-1.336449 points to the 
-1.271185 possible to be 
-1.501909 possible to change 
-1.471183 possible to produce 
-1.162108 potential to provide 
-0.9504622 power to the 
-0.4413998 predators to insects 
-0.8592629 predicted to be -0.03246684 
. 
. 
. 
 
-0.6168181 promise to respect -0.1524059 
 
 
\4-grams: 
-1.885318 in the world and 
-2.22455  in the world at 
-1.596555 in the world crude 
-2.102185 in the world economy 
-2.240158 in the world have 
-1.809982 in the world in 
-1.228551 in the world market 
. 
. 
. 
-0.4179575 including the world bank 
 



 

3.4 Translation Model Preparation 

 
In the following, we will describe step by step procedures to install Moses Support 
Libraries in CentOS-5 64 Bit and Ubuntu 9.04 
 
Instalation extra package for CentOS 64 bit, the syntax in the command line are 
 
# yum install subversion automake autoconf texinfo zlib1g zlib1g-dev zlib-bin 
zlibc 

 
Instalation extra package for Ubuntu 9.04, the syntax in the command line are 
 
$ sudo apt-get install subversion automake autoconf texinfo zlib1g zlib1g-dev 
zlib-bin zlibc 

 
 
 
 
Install MOSES 
 
Moses is a statistical machine translation system which allows to train translation models 
for any given language pair for which a parallel corpus, i.e. a collection of translated 
texts, exists. The Moses decoder works using a beam search [Koehn, 2004a] algorithm to 
determine the best translation for a given input. Translation is phrase-based [Koehn et al., 
2003] and allows words to have a factored representation. Moses has been designed by a 
team headed by Philipp Koehn. (Christian Federman, 2007) 
 
Installation Moses on Centos 64 bit 
 
The Moses source code can be obtained from the project website or the SourceForge 
Subversion repository. Check out the Moses code via Subversion: 
# yum install subversion 
# svn co https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk  
 

Assuming that the Moses source code is available in the $Source folder 
Compile trunk 
# cd trunk 
# ./regenerate-makefiles.sh 
 

Choose the preferred LM toolkit. To do that use the parameter either §with-srilm. 
# ./configure --with-srilm=/home/.../.../Source/srilm  

 
Edit Makefile in trunk, trunk/moses/src/, trunk/moses-cmd/src, trunk/misc, and 
trunk/mert 
# 
LDFLAGS=/home/../../Sources/srilm/bin/i686   
 
-->  LDFLAGS=/home/../../Sources/srilm/bin/i686-m64 
# 

 
Type the command   
# make -j 4 



 

At this stage, Compilation has been completed. 
 
Installation Moses on Ubuntu 9.04 
 
The Moses source code can be obtained from the project website or the SourceForge 
Subversion repository. Check out the Moses code via Subversion: 
$ sudo apt-get install subversion 
$ svn co https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk  
 

Assuming that the Moses source code is available in the $Source folder 
Compile trunk 
$ cd trunk 
$ ./regenerate-makefiles.sh 
 

Choose the preferred LM toolkit. To do that use the parameter either §with-srilm. 
$ ./configure –with-srilm=/home/.../.../Source/srilm 
 

Type the command   
$ make -j 4 

 
At this stage, Compilation has been completed. 
 
Install Moses Scripts 
 
Compile Moses Scripts 
The support scripts used by Moses are "released" by a Makefile which edits their paths to 
match your local environment. First, you need to edit the Makefile definition of two 
variables: 
      
Create folder in /home/.../.../Sources/ 
$ mkdir moses-scripts 
 

Edit trunk/scripts/Makefile 
### 
TARGETDIR=/home/.../.../Sources/moses-scripts 
BINDIR=/home/.../.../Sources/bin 
### 

 
Move to folder trunk/scripts/ 
$ cd trunk/scripts/ 
$ make release 

 
This will create a folder named moses-scripts/scripts-YYYYMMDD-HHMM with 
released versions of all the scripts. You will call these versions when training/tuning 
Moses. Moses scripts also require a SCRIPTS_ROOTDIR environment variable to be set. 
The output of make release should indicate this. 
       
Type the command   
export SCRIPTS_ROOTDIR=/home/.../.../Sources/moses-scripts/scripts-YYYYMMDD-HHMM 
 

 
 
 



Additional requirements: 
Moses requires some additional tools for the training and evaluation processes. For 
training, a tokenizer, and a lowercaser are necessary. These tools can be obtained from 
the website of the 2007 ACL Workshop on Statistical Machine Translation at: 
http://www.statmt.org/wmt07/scripts.tgz  (Christian Federman, 2007) 
 
Download scripts.tgz and extract them: 
S tar xzf scripts.tgz 
 

These scripts include: 
 Tokenizer scripts/tokenizer.perl 
 Lowercaser scripts/lowercase.perl 

 
Prepare data 
The first step is to prepare the parallel corpus data. It has to be tokenized, lowercased and 
sentences which would be too long to handle (and their correspondences in the other 
language) have to be removed from the corpus. 
 
Tokenize training data 
First we split out most punctuation from words. Special cases where splits do not occur 
are documented in the code. 
 
$ mkdir -p working-dir/corpus 
$ scripts/tokenizer.perl -l id < working-dir/corpus/file.id > working-
dir/corpus/file.tok.id 
$ scripts/tokenizer.perl -l en < working-dir/corpus/file.en > working-
dir/corpus/file.tok.en    
 
 

Filter out long sentences 
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/clean-corpus-n.perl working-
dir/corpus/file.tok id en working-dir/corpus/file.clean 1 50 
 
 

Lowercase training data 
$ scripts/lowercase.perl < working-dir/corpus/file.clean.id > working-
dir/corpus/file.lowercased.id 
$ scripts/lowercase.perl < working-dir/corpus/file.clean.en > working-
dir/corpus/file.lowercased.en   
 

Train Model 
Once the corpus data is prepared, the actual training process can be started. translation 
model training is done using: 
Run training script: ( enid →  -f en -e id ) 
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-factored-phrase-
model.perl -scripts-root-dir bin/moses-scripts/scripts-YYYYMMDD-HHMM -root-dir 
enid -corpus working-dir/corpus/file.lowercased -f id -e en -alignment grow-
diag-final-and -reordering-smooth msd-bidirectional-fe –lm 0:4:working-
dir/lm/file.id.lm:0 

 
Run training script: ( iden →  -e en -f id ) 
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-factored-phrase-
model.perl -scripts-root-dir bin/moses-scripts/scripts-YYYYMMDD-HHMM -root-dir 
iden -corpus working-dir/corpus/file.lowercased  -e id -f en -alignment grow-
diag-final-and -reordering-smooth msd-bidirectional-fe -lm 0:4:working-
dir/lm/file.en.lm:0  



 
 
The command line switches are explained below: 

• -corpus file corpus -e  
• -e english 
• -f foreign language 
• -alignment word-to-word alignment 
• grow-diag-final-and number of word alignment  
• -reordering-smooth msd-bidirectional-fe for reordering alignment probability 
• -lm Language Model parameter  

 
The training process takes place in nine steps, all of them executed by the script: 
 

1. Prepared data. Training data has to be provided sentence aligned in two file ( etc 
file.en and file.id ). 

2. Run Giza++. Giza++  is used to compute word alignments between two sentence 
aligned corpora and mkcls is to  generates the word classes. 

3. Align words. To establish word alignments based on the two GIZA++ alignments. 
4. Get lexical translation table. To estimate a maximum likelihood lexical translation 

table. 
5. Extract Phrases. All phrases are dumped into one big file. 
6. Score Phrases. To estimate the phrases translation probability. 
7. Building reordering model.  
8. Build generation model. 
9. Create configuration file. Create moses.ini 

 
The training process takes a lot of time and memory to complete. 
 
Test the moses.ini 
$ echo 'former world number one' | ../../trunk/moses-cmd/src/moses -f 
model/moses.ini > out 

 
Moses (built on Aug 29 2006) 
a beam search decoder for phrase-based statistical machine translation models 
written by Hieu Hoang, with contributions by Nicola Bertoldi, Ondrej Bojar, 
Chris Callison-Burch, Alexandra Constantin, Brooke Cowan, Chris Dyer, Marcello 
Federico, Evan Herbst, Philipp Koehn, Christine Moran, Wade Shen, Richard Zens. 
(c) 2006 University of Edinburgh, Scotland 
command: ../../moses-cmd/src/moses -f moses.ini 
Defined parameters (per moses.ini or switch): 
config: moses.ini 
input-factors: 0 
lmodel-file: 0 0 4 ../lm/file.id.lm 
mapping: T 0 
ttable-file: 0 0 1 phrase-table 
ttable-limit: 10 
weight-d: 1 
weight-l: 1 
weight-t: 1 
weight-w: 0 
Start loading LanguageModel ../lm/file.id.lm : [0.00] seconds 
Finished loading LanguageModels : [3.00] seconds 
IO from STDOUT/STDIN 
Start loading PhraseTable phrase-table : [3.00] seconds 
Finished loading phrase tables : [3.00] seconds 



Created input-output object : [3.00] seconds 
End. : [3.00] seconds 
 
$ vi out  
mantan nomor satu dunia 
 

4. Evaluation and Related Issues to SMT Design 
 
4.1 Evaluation of Translation Quality 
 
We believe more work on evaluation is called for. There was insufficient time during the 
Phase 1.2 to fully evaluate the quality of output from the Toolkit prototype using Moses 
Decoder, but we record some of our thoughts here. 
 
Most MT evaluation regimes involve collecting human judgments over many sentences 
and these regimes are expensive for individual researchers. In the commercial world, the 
market provides a constant evaluation of translation software, albeit one that seems 
currently driven by factors other than output text quality. In the final analysis, there is no 
measure that can substitute for user satisfaction. But this leaves the individual researcher 
in a bind.  
 
It is ideal that human subjects fluent in both the source language and the target language 
evaluate the material.  Monolingual users of the target language alone are poorly prepared 
to evaluate the content of the translation, despite reference translations.  This point is 
proven with the DARPA evaluations of 1000 when the quality of human translations of 
variable quality, were also used for evaluation in an exam that asked evaluators to answer 
questions on the content of a translated passage. A monolingual evaluator is best suited 
for evaluating the fluency of the output, and not the content, unless the content can really 
be assured, such as in treaties and other legal documents where the translator has a very 
high incentive for ensuring that precise translations are produced. 
 
Another concern that arises relates to the use of native speakers of the source language 
and their capacity to determine the fluency of output in the target language, as well as 
possible biases which allow them to find meaning in  “word hash” output from MT that a 
monolingual speaker might missing. In defining the scale for evaluation, we aim to 
address this concern. Since the system is trained on texts with unique properties in terms 
of lexicons used translation styles involved, and so on. We concluded that it was 
reasonable to draw evaluation texts from the pre-training corpus. However, we strongly 
emphasize that in no way is the system to be trained on texts that will later be used for 
evaluation.  
 
The speech recognition community has largely focused on word -error recognition rate, in 
the belief that, this figure will ultimately correlate with user satisfaction. And it is easy to 
measure. In finding text for evaluation, there were several concerns length, context, and 
novelty.  Because of limits on the computational complexity of decoding and training the 
corpora was stripped of sentences of length above a certain bound, originally 10 tokens. 
This processed corpus was then used for extracting sentences for evaluation. In addition, 
for the length of the entire evaluation, we suggest a test-bed of 100 sentences. As 100 
sentences seem like a reasonably small amount of work for evaluators per evaluation, we 



decided upon 1000 test sentences from the outset (out of 50,000 sentences in PANL-
BPPT corpus). 
 
Evaluation is done using the BLEU scoring tool. Assuming a reference translation 
evaluation.en exists, we can evaluate the translation quality of output.en which was 
translated from evaluation.de as follows: 
 
 
To produce output evaluation from Moses ; 
$ ./moses -f ./moses.ini <file_name.lowercase.id> 
file_name.id.out 
$ ./moses -f ./moses.ini <file_name.lowercase.en> 
file_name.en.out 
 
To produce output evaluation from MultiBLEU 
$ multi-BLEU.perl file_name.lowercase.id < file_name.id.out >& 
BLEU 
$ multi-BLEU.perl file_name.lowercase.en < file_name.en.out >& 
BLEU 
 
 
 

4.2 Training Set Size vs. Translation Quality 
 
One question we had about statistical machine translation was how much data do we 
need? Are sentence pairs enough? If you go from one million sentence pairs to two 
million, how much improvement will you see? We imagined that a lot of data is useful, if 
you’ve never seen the phrase “real estate” before in your parallel corpus, then you 
probably aren’t going to translate it correctly. It is mandatory in the machine learning 
community to plot data size on the x axis vs. performance on the y axis, depicting a 
learning curve of SMT.  

 

This is particularly important in natural language processing, where we can frequently 
purchase more data.  The learning curve leads naturally to a second question what to plot 
on the y axis. Machine translation is notoriously difficult to evaluate. It shares this 
notoriety with other tasks that involve generating human language as opposed to 
interpreting it. It is possible to evaluate a speech recognizer by counting word errors, not 
so with a speech synthesizer. Likewise, it is easier to say whether a language 
interpretation system got the right syntactic structure than to say whether a generation 
system produced a good syntactic structure. 

 

Machine translation involves both interpretation and generation.  Following many of the 
evaluation regimes that have been proposed for MT, we decided to go with either a 
simple scoring mechanism or a simple relative ranking of translations from different 
systems configurations. Researchers can try discard and adopt many new ideas without 
involving human subjects. They can also compare results on common test data sets. As 
mentioned above, even this is difficult to do in translation. Interestingly, many speech 
researchers find it convenient to evaluate their ideas with respect to perplexity: a measure 
of how well a statistical model fits or explains the data. For example, in language 



modeling, the goal is to produce a program that assigns a probability P(e) to every string 
of words e*. All these probabilities sum to 1 so there is only so much to go around. It is 
possible to ask how good a language model is without making reference to word error 
rate or any other task level measure. One simply asks for the particular number P(e) that a 
particular instantiated model assigns to a particular text.  If the text is good English, we 
expect P(e) to be high if the text is bad English, we expect P(e) to be low. If we observe a 
language model which is assigning probabilities the other way around, then it probably 
isn’t a very good language model. 

 

It is reasonable to ask for the P(e) that a model assigns to the text it was trained on. In this 
case, a memorizing program would do very well, by assigning P(e|f). However, this 
program would by definition assign P(e|f) to every other text e* and this will lead to a 
very poor word error rate. Therefore a more reasonable evaluation is test set perplexity, 
which is related to the probability that the model assigns to a previously unseen test 
English text. The language model must lay bets on all kinds of strings. If it concentrates 
its bets on certain subset of strings, then it must hope that when the previously unseen text 
is revealed it is to be found in that subset. Because all probabilities sum to 1, increasing 
our bet on one string necessarily means decreasing our bet on some other string. 

 

It is typical in language modeling to bet at least something on every conceivable string e. 
If we accidentally bet nothing on e, then our P(e) would be zero, and our perplexity would 
be infinite.  So, if a language model uses previously observed word pair frequencies in 
constructing a probability score P(e) for a new string, it will typically smooth these 
frequencies so as to accept a string that contains novel word pairs. We evaluated the 
translation quality of the system using the BLEU metric. We compared our system to 
Moses decoder, a leading SMT decoder. 

 

The result of BLEU score is presented in Table 1, Figure 4, and Figure 5. 

 
Table 1. BLEU score for English-to-Indonesia and Indonesia-to-English. 

 

 

Word Eng-Ina Ina-Eng
60000 0.775 0.802

120000 0.802 0.802
180000 0.804 0.806
240000 0.824 0.806
280000 0.838 0.807
320000 0.843 0.812
380000 0.927 0.908
400000 0.928 0.918
500000 0.938 0.926
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Figure.4 Graph of BLEU score for English-to-Indonesia 
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Figure 5. Graph of BLEU score for Indonesia-to-English 

 

We computed all system on the 500.000 word into 9 block of word Indonesia-to-English 
and English-to-Indonesia, and computed the BLEU Scored on these blocks individually. 
Statistic of the data sets is shown in Table 1.  

 

The language model used for all models (include decoding models and system 
combination models) is a 4-gram model trained into 9 samples. We thus have 9 samples 
of BLEU Score for each system. The first observation showed significantly increasing 
BLEU score. In Figure 4 and Figure 5 show how BLEU score was improved with 
increasing size of training corpus. Each curve on the graph represent corpus size, for 
example, 400.000 word corpus have BLEU score of 0,918 and for the 500.000 word 
corpus, BLEU score rise to 0,926. This concludes that the BLEU score have improve by 
improving the translation model. Figure 5 shows the effect of maximal word count on 
BLEU scores. With the increase of maximal word count, the BLEU score increased 



dramatically. Finally, the performance of Statistical Machine Translation had to be 
improving by using larger size of training data. If the data is huge, the performance could 
better. A higher BLEU score indicates better translation. 

 

5. Conclusion and Future Work 
 
We have reported in this research work the development of statistical MT system for 
Bahasa Indonesia – English. There is significant improvement in the output quality of 
English-Indonesia translations compare to our previous work on symbolic approach.  
 
Using 500K words training corpus, we were able to achieve 92.1% translation quality for 
English to Bahasa Indonesia (easier task than other direction). Many interesting research 
directions remain open. We can use different variation distributions other than the n-gram 
model. Interpolation with other models is also interesting. 
 
We analyzed currently used approach to automatic MT evaluation, the BLEU score. Our 
show analysis that BLEU score have some flaws; one needs to understand these problems 
to correctly interpret the reported BLEU scores. We also described a method to calculate 
the statistical significance for BLEU using another Score metrics. These tests will give us 
the confidence interval for the BLEU scores. In the future action is suggested by the 
smaller sentences are much more fluent in translation compared to medium length and 
long sentences. 
 
The Future Work should be in the line of combining Symbolic-Statistical approaches to 
increase the quality and accuracy of bidirectional Bahasa Indonesia – English Machine 
translation. In order to achieve better system, the machine translation system will consist 
of the above modules. Statistical method or combination of statistical and example-based 
method (using the parallel corpus) will be employed. The hybrid machine translation 
system will consist of the following modules: 

 
• Morphological analyzer/POS Tagger: the derivational morphology of Bahasa 

Indonesia, particularly that of verbal morphology, is quite complex, and therefore 
requires careful analysis. Existing Indonesian morphological literature (Alwi, et. 
al. 2003) will be surveyed and compared with the empirical evidence as found in 
the corpus. The morphological analysis will be built using statistical methods such 
as n-gram or HMM (Manning and Schütze 1999). 

• Shallow parser/ Syntactic parser: completion of the morphological analysis will 
enable the development of phrase parser. This parser will decide noun phrases, 
verb phrases, adjective phrases, etc. in a sentence. This parser will be built using 
statistical methods also. Furthermore, a robust syntactic parser can be build using 
output of the shallow parser to decide syntactical structure of a sentence, i.e., 
which part of a sentence is the subject, predicate, object. 

• Phrase Reordering System: this module will perform transformation of phrase 
structure from Indonesian DM to English MD, to enable correct translation of 



noun phrase and adjective phrase. This module will prepare the input sentence or 
files prior of translation process, to enable better translation quality 

• Machine Translation: the statistical MT system will contain 2 modules, each for 
English-Indonesian and Indonesian-English translation modules. 

• Generation system: this module will produce target sentences (Indonesian or 
English) based on an intermediate representation created by the statistical MT. 
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Appendix A 

Sample Translation Result 
http://translator.iptek.net.id/PANL 

 

English Bahasa Indonesia 
Abbas and Haniyeh had originally been 
due to meet on Saturday but the meeting 
was put back to Sunday 

Abbas dan Haniya mulanya telah 
dijadwalkan bertemu Sabtu tapi 
pertemuan itu diundur sampai Ahad 

There is a progressive European position 
towards dealing with the Palestinian 
unity government 

Ada kemajuan sikap Eropa ke arah 
kesepakatan dengan pemerintah 
persatuan Palestina 

South Africa host the 2010 event Afrika Selatan akan menjadi tuan rumah 
Piala Dunia 2010 

The second ism sees that backwardness 
is caused by existence of inequality and 
gap among countries 

Aliran kedua melihat bahwa 
keterbelakangan itu disebabkan adanya 
ketidakadilan dan kesenjangan antar 
negara 

The above opinion can be analysis from 
two sides i e consumer and producer 
sides 

Anggapan di atas dapat kita telaah dari 
dua sisi yaitu sisi konsumen dan 
produsen 

Asia has long been blighted by soccer 
corruption scandals 

Asia sudah lama dirusak oleh skandal 
korupsi sepak bola 

Several assessments and theories have 
been produced by economists as solution 
of inflation problem 

Berbagai kajian dan teoripun telah 
banyak dihasilkan oleh para ekonom 
sebagai solusi dari persoalan inflasi 

In term of income level widening gap 
occurs 

Dalam hal tingkat pendapatan terjadi 
jurang kesenjangan yang makin lebar 

In national context Indonesian awaken 
was initiated on May 28 1908 

Dalam konteks nasional kebangkitan 
Indonesia di cetuskan pada 28 Mei 1908 

Can be imagined how more than 300 
years occupation at that time had 
castrated frame of thinking and 
mentality of Indonesian people 

Dapat dibayangkan betapa lebih 300 
tahun sudah penjajahan saat itu 
mengebiri pola fikir dan mental rakyat 
Indonesia 

From what FIFA has said they have to 
let him go Batista said in a television 
interview 

Dari apa yang dikatakan FIFA mereka 
harus membolehkan dia pergi kata 
Batista dalam wawancara televisi 

 


