

PAN Localization Project

RESEARCH REPORT

PHASE 3.2

Final Report on
Statistical Machine Translation for Bahasa

Indonesia-English and English- Bahasa Indonesia

Agency for the Assessment and Application of Technology
Badan Pengkajian dan Penerapan Teknologi (BPPT)

October 2009

Final Report on
Statistical Machine Translation for Bahasa Indonesia-
English (BI-E) and English-Bahasa Indonesia (E-BI)

1. Introduction

In the era of globalization, communication among languages becomes much more
important. Computer as a tool to help facilitating communication between different
languages has been used more actively. People has been hoping that natural language
processing and speech processing, which are branches of artificial intelligence with ICT
(Information and Communication Technology), can assist in smoothening the
communication among people with different languages. However, especially for
Indonesian language, there were only few researches on computational linguistics, natural
language processing and speech processing in the past.

Machine translation (MT) is a sub-field of computational linguistics that investigates the
use of computer software to translate text or speech from one natural language to another.
At its basic level, MT performs simple substitution of words in one natural language for
words in another. Using corpus techniques, more complex translations may be attempted,
allowing for better handling of differences in linguistic typology, phrase recognition, and
translation of idioms, as well as the isolation of anomalies.

Despite its involvement in international projects, basic researches in MT are still
underdeveloped. For instance, there is no available corpus (collection of linguistic data;
written, spoken, or a mixture of the two) – textual corpus for natural language processing
researches or spoken corpus for speech processing researches – which is vital and very
basic mean to conduct a research in the field of MT, natural language processing or
speech processing. In addition, researchers need basic resources to study the morphology
and syntax of Bahasa Indonesia for doing further researches. By using a corpus, one may
study the possible structure of sentences (both formal and informal language), words
frequency, relation among phrases, etc. In short, information contained in a linguistic
corpus is very useful and crucial for doing a research in natural language processing or
speech processing. Based on the fact that there is no corpus available and its crucial
importance, the first phase of this project is to build large bilingual Indonesian-English
corpus, which in turn are used to build ready-to-use modules/systems for the statistical
machine translation (SMT) of English to Bahasa Indonesia.

As with other parts of the world, Internet has connected Indonesian user with the rest of
the world. Internet has been providing wealthy information on seemingly every thing.
However, information in Internet is mostly written in English language. The average
English proficiency among Indonesians, particularly those living in rural areas and small

towns is very low. For many Indonesian people, writing in English is still an obstacle. It
will be very useful if there is a tool such as machine translation system to help translating
English into Indonesian texts and vice versa. Statistical machine translation tries to
generate translations using statistical methods based on bilingual text corpora. The term
parallel corpora are typically used in linguistic circles to refer to texts that are translations
of each other. In order to exploit a parallel text, some kind of text alignment, which
identifies equivalent text segments (approximately sentences), is a prerequisite for
analysis.

The goal of statistical machine translation is to translate a source language sequence into
a target language sequence by maximizing the posterior probability of the target sequence
given the source sequence. In state-of-the-art translation systems, this posterior
probability usually is modeled as a combination of several different models, such as:
phrase-based models for both translation directions, lexicon models for translation
directions, target language model, phrase and word penalties, etc. Probabilities that
describe correspondences between the words in the source language and the words in the
target language are learned from a bilingual parallel text corpus and language model
probabilities are learned from a monolingual text in the target language. The larger the
available training corpus used for translation model, then the better the performance of a
translation system.

The benefits of statistical machine translation over traditional paradigms that are most
often cited are the following:

• Better use of resources
There is a great deal of natural language in machine-readable format. Generally,
SMT systems are not tailored to any specific pair of languages. Rule-based
translation systems require the manual development of linguistic rules, which can
be costly, and which often do not generalize to other languages.

• More natural translations
The ideas behind statistical machine translation come out of information theory
Essentially, the document is translated on the probability p(e|f) that a string e in
native language (for example, English) is the translation of a string f in foreign
language (such as Bahasa Indonesia). Generally, these probabilities are estimated
using techniques of parameter estimation.

2. Development Framework
There are two important components in forming machine translation system where both
this process is important and each other interconnected component, first is the corpora
and secondly is Statistical Machine Translation (SMT). The Final Design Framework of
English-Indonesia SMT is given in Figure 1. This development framework differs from
the one that we reported in the Research Report on Initial Design SMT Framework
(Report No.3 PANL Report BPPT Initial Design Framework SMT.pdf)

Statistical machine translation (SMT) is a machine translation paradigm where
translations are generated on the basis of statistical models whose parameters are derived
from the analysis of bilingual text corpora. The statistical approach contrasts with the
rule-based approaches to machine translation as well as with example-based machine
translation.

The first ideas of statistical machine translation were introduced by Warren Weaver in
19491, including the ideas of applying Claude Shannon's information theory. Statistical
machine translation was re-introduced in 1991 by researchers at IBM's Thomas J. Watson
Research Center2 and has contributed to the significant resurgence in interest in machine
translation in recent years. Nowadays it is by far the most widely-studied machine
translation method.

Machine translation (MT) is a sub-field of computational linguistics that investigates the
use of computer software to translate text or speech from one natural language to another.
At its basic level, MT performs simple substitution of words in one natural language for
words in another. Using corpus techniques, more complex translations may be attempted,
allowing for better handling of differences in linguistic typology, phrase recognition, and
translation of idioms, as well as the isolation of anomalies.

Current machine translation software often allows for customization by domain or
profession (such as news) - improving output by limiting the scope of allowable

1 W. Weaver (1955). Translation (1949). In: Machine Translation of Languages, MIT Press, Cambridge, MA.
2 P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer (1993). The mathematics of statistical machine
translation: parameter estimation. Computational Linguistics, 19(2), 263-311.

Moses SMT
Decoder

Indonesian-
English Parallel
Corpus
(PANL-BPPT-ID-EN)

Indonesian
Monolingual
Corpus
(PANL-BPPT-ID)

English
Monolingual
Corpus
(PANL-BPPT-EN)

SRILM
Giza++

Source

Target

Figure 1. Bidirectional Indonesian-English Development Framework

substitutions. This technique is particularly effective in domains where formal or
formulaic language is used. It follows then that machine translation of government and
legal documents more readily produces usable output than conversation or less
standardized text.

Improved output quality can also be achieved by human intervention: for example, some
systems are able to translate more accurately if the user has unambiguously identified
which words in the text are names. With the assistance of these techniques, MT has
proven useful as a tool to assist human translators, and in some cases can even produce
output that can be used "as is". However, current systems are unable to produce output of
the same quality as a human translator, particularly where the text to be translated uses
casual language.

Statistical machine translation tries to generate translations using statistical methods
based on bilingual text corpora. The term parallel corpora are typically used in linguistic
circles to refer to texts that are translations of each other. And the term comparable
corpora refer to texts in two languages that are similar in content, but are not translations.
In order to exploit a parallel text, some kind of text alignment, which identifies equivalent
text segments (approximately sentences), is a prerequisite for analysis.

To produce a good translation as does human translation hence needed a good bilingual
text corpus. There is many sources providing various article type to be made by collection
of corpus, however require to be conducted election to written article use good structure
method. We still find some articles not in good sentence structure, so that to make parallel
sentence still needed repairs.

2.1. Corpora

As a language is dynamic and constantly evolving, it is essential that the constructed
linguistic resources are based on empirical evidence. To support this, the first phase of the
work involves the compilation of corpora, i.e. monolingual collection of electronic texts
in Bahasa Indonesia and bilingual collection of parallel English and Indonesian texts. The
choice of documents is affected by the intended coverage of the linguistic resources.

• PANL-BPPT-ID Monolingual Indonesian corpus (Bahasa Indonesia)

The collection is built on 500,000 words corresponding to around 50,000
sentences in Bahasa Indonesia. In order to create the target language model
(Indonesia language model) more accurately, it is planned that the PANL-BPPT
monolingual corpus will be combined with ANTARA corpus which consist of
approximately 2,500,000 sentences. The corpus will contain formal and informal
words, and various sentence structures.

• PANL-BPPT-EN Monolingual English corpus (Translation of Indonesian corpus)

It is planned that we will use the result of translation of PANL-BPPT-ID to
develop English monolingual corpus which contains various domain. It will
consist of approximately 50,000 sentences.

• PANL-BPPT-ID-EN Parallel corpus (Bahasa Indonesia and English)

The parallel corpus (PANL-BPPT-ID-EN) is constructed through sentence
alignment process of Indonesia and English Monolingual Corpus. The total
collection will contain 500,000 words of Indonesian, approximately more than
50,000 sentences for each language, making a total of 100,000 sentences in both
languages.

2.2 Statistical Machine Translation Toolkit

The toolkit is a complete out-of-the-box translation system for academic research. It
consists of all the components needed to preprocess data, train the language models and
the translation models. It also contains tools for tuning these models using minimum error
rate training (Och 2003) and evaluating the resulting translations using the BLEU score
(Papineni et al. 2002).

Moses uses standard external tools for some of the tasks to avoid duplication, such as
GIZA++ (Och and Ney 2003) for word alignments and SRILM for language modeling.
Also, since these tasks are often CPU intensive, the toolkit has been designed to work
with Sun Grid Engine parallel environment to increase throughput. In order to unify the
experimental stages, a utility has been developed to run repeatable experiments. This uses
the tools contained in Moses and requires minimal changes to set up and customize.

The toolkit has been hosted and developed under sourceforge.net since inception. Moses
has an active research community and has reached over 1000 downloads as of 1st March
2007. The main online presence is at http://www.statmt.org/moses/ where many sources
of information about the project can be found. Moses was the subject of this year’s Johns
Hopkins University Workshop on Machine Translation (Koehn et al. 2006).

The decoder is the core component of Moses. To minimize the learning curve for many
researchers, the decoder was developed as a drop-in replacement for Moses, the popular
phrase-based decoder. In order for the toolkit to be adopted by the community, and to
make it easy for others to contribute to the project, we kept to the following principles
when developing the decoder:

• Accessibility
• Easy to Maintain
• Flexibility
• Easy for distributed team development
• Portability

The decoder was originally developed for the phrase model proposed by Marcu and
Wong. At that time, only a greedy hill-climbing decoder was available, which was
insufficient for our work on noun phrase translation (Koehn, 2003). The decoder
implements a beam search and is roughly similar to work by Tillmann and Och. In fact,
by reframing Och's alignment template model as a phrase translation model, the decoder
is also suitable for his model, as well as other recently proposed phrase models. The
phrase-based decoder is developed by employing a beam search algorithm, similar to the

one used by Jelinek for speech recognition. The Bahasa Indonesia output sentence is
generated left to right in form of hypotheses.

The development objective on our work is to build a statistical machine translation toolkit
and make it available to researchers in our PANL community. Therefore, this SMT
toolkit would include corpus preparation software, bilingual text training software, and
run time decoding software for performing actual translation. All these software
components are based on Open Source Software (OSS).

3. Implementation of Bidirectional English-Bahasa Indonesia
Statistical Machine Translation

3.1 Hardware Preparation
In developing the SMT we will use a server with the computing capacity to process a big
translation table, minimum of 1.3 GHz. The SMT decoder requires memory of 2 GB. We
opt to select the latest server technology which is based on dual core or quad core CPU.
We use the memory system which can handle error rate correction. The network adapter
must have 10/100/1000 Mbps bandwidth access, which is highly important when running
parallel processes for servicing multiple client. The configuration is as follows:

Processor (max) Up to 2 quad-core Intel® Xeon® X5500 series
with Intel QuickPath Interconnect (QPI) technology,
up to 2.93 GHz and up to 1333 MHz front-side bus

Number of processors
(std/max)

1/2

Cache (max) Up to 8 MB
Memory1 (max) 1 GB, 2 GB, 4 GB or 8 GB DDR-3 RDIMMs with 16

slots up to 128 GB maximum memory
Expansion slots (I/O) 4 PCI-Express (4x8) Gen 2 slots: 2x8 full-length,

full-height; 1x8 half-length, full-height; 1x8 low-
profile. 4x8 are convertible to 2x16 via optional
risers. Also, 2x PCI-X via optional risers

Disk bays (total/hot-
swap)

Up to twelve 2.5" hot-swap Serial Attached SCSI
(SAS)/Serial ATA (SATA) HDDs or solid state drives
(SSDs)

Maximum internal
storage1,2

Up to 3.6 TB hot-swap SAS or up to 3.6 TB hot-
swap SATA or up to 600 GB hot-swap SSD storage

Network interface Integrated 2 ports, plus 2 ports optional Gigabit
Ethernet

Power supply (std/max) 1/2; 675 W each
Hot-swap components Power supplies, fan modules, disks
RAID support Hardware RAID-0, -1, optional RAID-5, -6

3.2 Data Corpus Preparation
In order to prepare the SMT for English-Bahasa Indonesia, we need to train the toolkit
using a new language pairs. The need for bilingual texts for training is compulsory for the
SMT decoder; hence we use the collected corpus PANL-BPPT (parallel corpus). The
description of Corpus files can be found in the Deliverables (provided in a CD ROM)
organize into:

1 Corpus 100K Phase 1

1.1. PANL-BPPT-ID-100K-1.xml
1.2. PANL-BPPT-EN-100K-1.xml,
1.3. PANL-BPPT-Project-100K-1-omegaT.tmx

2. Corpus 150K Phase 1
2.1. PANL-BPPT-ID-150K-1.xml
2.2. PANL-BPPT-EN-150K-1.xml
2.3. PANL-BPPT-Project-150K-1-omegaT.tmx

3. Corpus 150K Phase 2
3.1. PANL-BPPT-ID-150K-2.xml,
3.2. PANL-BPPT-EN-150K-2.xml,
3.3. PANL-BPPT-Project-150K-2-omegaT.tmx

4. Corpus 100K Phase 2
4.1. PANL-BPPT-ID-100K-2.xml
4.2. PANL-BPPT-EN-100K-2.xml
4.3. PANL-BPPT-Project-100K-2-omegaT.tmx

3.3 Language Model Preparation
The tool that we use is SRILM (SRI Language Modeling). SRILM is a toolkit for
building and applying statistical language models (LMs), primarily for use in speech
recognition, statistical tagging and segmentation, and machine translation. It has been
under development in the SRI Speech Technology and Research Laboratory since 1995.
The toolkit has also greatly benefited from its use and enhancements during the Johns
Hopkins University/CLSP summer workshops in 1995, 1996, 1997, and 2002. This tool
available in http://www.speech.sri.com/projects/srilm/download.html

Figure 2. Data Processing of Statistical Model for SMT

Sources of
Bilingual
Parallel Text

Database
Translations

Articles
Translation

Dictionary/
Glossary

Internet
News

Interpreter
e-Book

Pre-processing
Format Filtering
Transcription
Document Align
Segment Align

Parallel Corpus
(PANL-BPPT)

Translation
Model

Bilingual
Data

Language
Model

Monolingual
Data

TM-LM
Statistica

l

Install SRILM in CentOS 64 bit and create folder srilm
Instalation package gcc for CentOS 64 bit, the syntax in the command line are
yum install gcc4-c++-4.1.2-44.EL4.x86_64.rpm gawk gzip csh

mkdir srilm
cd srilm

Extrack SRILM
$ tar -xzvf srilm.tgz

Edit Makefile
$ vi Makefile

SRILM = /usr/.../.../.../devel
MACHINE_TYPE

SRILM = /home/.../.../Sources/srilm
MACHINE_TYPE = i686-m64

Move to common folder
cd common

edit Makefile.machine.i686-m64

CC = /usr/bin/gcc $(GCC_FLAGS)
CXX = /usr/bin/g++ $(GCC_FLAGS) -DINSTANTIATE_TEMPELATES
.
.
.
TCL_INCLUDE =
TCL_LIBRARY =
NO_TCL = 1

Move to srilm folder
cd ../srilm

Type the command and run it
make World

Type the command
add SRILM to global PATH variable.
export PATH=/home/.../.../Sources/srilm/bin/i686-m64:/home/.../.../Sources/srilm/bin:$PATH

Move to folder test
cd test

Type the command
make all

And we are done with SRILM!

Install SRILM in Ubuntu 9.04 and create folder srilm
Instalation package gcc for Ubuntu 9.04, the syntax in the command line are
$ sudo apt-get install g++ make gawk gzip tcl8.5 tcl8.5-dev csh

$ mkdir srilm
$ cd srilm

Extrack SRILM
$ tar -xzvf srilm.tgz
$ edit Makefile

Edit Makefile

SRILM = /usr/.../.../.../devel
MACHINE_TYPE

SRILM = /home/-path-to-/srilm
MACHINE_TYPE = $ (shell $(SRILM)/sbin/machine-type)

Move to common folder
cd common

edit Makefile.machine.i686

CC = /usr/bin/gcc $(GCC_FLAGS)
CXX = /usr/bin/g++ $(GCC_FLAGS) -DINSTANTIATE_TEMPELATES
.
.
.
TCL_INCLUDE = -I/usr/include/tcl8.5/
TCL_LIBRARY = /usr/lib/libtcl8.5.so

Move to srilm folder
$ cd ../srilm
$ make World

Type the command
add SRILM to global PATH variable.
export
PATH=/home/.../.../sources/srilm/bin/i686:/home/.../.../Sources/srilm/bin:$PATH

Move to folder test
cd test
make all

And we are done with SRILM!

Install Giza++
GIZA++ is a statical machine translation toolkit that is used to compute word alignments
between two sentence aligned corpora. This package also contains the source for the
mkcls tool which generates the word classes necessary for training some of the alignment
models.

mkcls is a tool to train word classes by using a maximum-likelihood-criterion. The
resulting word classes are especially suited for language models or statistical translation
models. (http://code.google.com/p/giza-pp/)

Installation Giza on CentOS 64 bit
Current version will compiled with newer gcc4-c++-4.1.2 compilers which are standard on
modern computer system,

Download giza-pp-v1.0.3.tar.gz and extract it
tar –xzvf giza-pp-v1.0.3.tar.gz
cd GIZA++-v2/

Edit Makefile

CXX = g++ ---> CXX = g++4

Then erase -DBINARY_SEARCH_FOR_TTABLE

Move to folder gizapp
cd ../gizapp
make

Copy GIZA++ and mkcls to a bin location for Moses Scripts in /home/.../.../Sources/

Create folder bin
mkdir -p bin
cp GIZA++-v2/GIZA++ bin/
cp GIZA++-v2/snt2cooc.out bin/
cp mkcls-v2/mkcls bin/

Both GIZA++ and mkcls will be called by Moses training scripts.
And we are done with Giza++!

Installation Giza on Ubuntu 9.04
Current version will compiled with newer g++-4.x compilers which are standard on
modern computer system,

Move to folder Giza++-V2
$ cd GIZA++-v2/

Edit Makefile

CXX = g++ ---> CXX = g++-4.1
then errase -DBINARY_SEARCH_FOR_TTABLE

Move to folder gizapp
$ cd ../gizapp
$ make

Copy GIZA++ and mkcls to a bin location for Moses Scripts in /home/.../.../Sources/
$ mkdir -p bin
cp GIZA++-v2/GIZA++ bin/
cp GIZA++-v2/snt2cooc.out bin/
cp mkcls-v2/mkcls bin/

Both GIZA++ and mkcls will be called by Moses training scripts and we are done with
Giza++!

In this experiment, we use SRILM to functions as follows (see Figure 3):

• Produce the n-gram of a corpus
• Train the language model from the n-gram
• Calculate the perplexity of data test using the trained language model

Figure 3. Step-by Step Usage of SRILM

Build Language Model
The most important command of the SRILM toolkit is the ngram-count tool which counts
ngrams and estimates language models. There exist several command line switches to
fine-tune the resulting language model. A sorted 4-gram language model from a given
English corpus in en.corpus can be created using the following command: (Christian
Federman, 2007)

Type the command
$ /path-to-srilm/bin/i686-m64/ngram-count -order 4 -interpolate -kndiscount -
text working-dir/lm/file –lm working-dir/lm/file.lm

The command line switches are explained below:
• -order n sets the maximal order (or length) of n-grams to count. This also

determines the order of the language model.
• -interpolate causes the discounted n-gram probability estimates at the specified

order n to be interpolated with estimates of lower order.
• -kndiscount activates Chen and Goodman’s modified Kneser-Ney discounting for

ngrams.
• -text specifies the source file from which the language model data is estimated.

This file should contain one sentence per line, empty lines are ignored.
• -lm specifies the target file to which the language model data is written.

Here is Language Model with SRILM toolkit 4-gram

\data\
ngram 1=29682
ngram 2=232779
ngram 3=47994
ngram 4=26847

-5.065517 considerations -0.1159884
-5.239327 considerd -0.1159884
-3.804326 considered -0.2757038
-3.92718 considering -0.2303499
-4.269085 considers -0.1523835
-4.269085 consist -0.7713577
-4.204758 consisted -0.7038553

-4.964279 consistency -0.1159884
-4.344625 consistent-0.3910371
-4.819496 consistently -0.1159884
-4.175847 consisting -1.047205
-3.828781 consists -1.201482
-5.065517 console -0.1159884
-5.239327 consoles -0.1159884
-5.239327 consolidate -0.1159884
-4.624427 consolidated -0.1740036
-5.065517 consolidating -0.1159884
-4.43613 consortium -0.1541466
-5.239327 consorzio -0.1159884
-4.964279 conspiracies -0.1159884

\2-grams:
-3.15486 many component
-2.601195 many computer
-3.190189 many conglomerates
-3.198194 many considerations
-3.184963 many constraints
-3.193709 many continents
-3.193709 many cooperating
-3.199374 many copyrights
-1.748011 many countries -0.03104825
-3.181513 many critics
-3.199374 many crn
.
.
.

-3.198194 many exemptions

\3-grams:
-1.727292 points to eat
-0.370703 points to rp -0.03852752
-1.336449 points to the
-1.271185 possible to be
-1.501909 possible to change
-1.471183 possible to produce
-1.162108 potential to provide
-0.9504622 power to the
-0.4413998 predators to insects
-0.8592629 predicted to be -0.03246684
.
.
.

-0.6168181 promise to respect -0.1524059

\4-grams:
-1.885318 in the world and
-2.22455 in the world at
-1.596555 in the world crude
-2.102185 in the world economy
-2.240158 in the world have
-1.809982 in the world in
-1.228551 in the world market
.
.
.
-0.4179575 including the world bank

3.4 Translation Model Preparation

In the following, we will describe step by step procedures to install Moses Support
Libraries in CentOS-5 64 Bit and Ubuntu 9.04

Instalation extra package for CentOS 64 bit, the syntax in the command line are

yum install subversion automake autoconf texinfo zlib1g zlib1g-dev zlib-bin
zlibc

Instalation extra package for Ubuntu 9.04, the syntax in the command line are

$ sudo apt-get install subversion automake autoconf texinfo zlib1g zlib1g-dev
zlib-bin zlibc

Install MOSES

Moses is a statistical machine translation system which allows to train translation models
for any given language pair for which a parallel corpus, i.e. a collection of translated
texts, exists. The Moses decoder works using a beam search [Koehn, 2004a] algorithm to
determine the best translation for a given input. Translation is phrase-based [Koehn et al.,
2003] and allows words to have a factored representation. Moses has been designed by a
team headed by Philipp Koehn. (Christian Federman, 2007)

Installation Moses on Centos 64 bit

The Moses source code can be obtained from the project website or the SourceForge
Subversion repository. Check out the Moses code via Subversion:
yum install subversion
svn co https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk

Assuming that the Moses source code is available in the $Source folder
Compile trunk
cd trunk
./regenerate-makefiles.sh

Choose the preferred LM toolkit. To do that use the parameter either §with-srilm.
./configure --with-srilm=/home/.../.../Source/srilm

Edit Makefile in trunk, trunk/moses/src/, trunk/moses-cmd/src, trunk/misc, and
trunk/mert

LDFLAGS=/home/../../Sources/srilm/bin/i686

--> LDFLAGS=/home/../../Sources/srilm/bin/i686-m64

Type the command
make -j 4

At this stage, Compilation has been completed.

Installation Moses on Ubuntu 9.04

The Moses source code can be obtained from the project website or the SourceForge
Subversion repository. Check out the Moses code via Subversion:
$ sudo apt-get install subversion
$ svn co https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk

Assuming that the Moses source code is available in the $Source folder
Compile trunk
$ cd trunk
$./regenerate-makefiles.sh

Choose the preferred LM toolkit. To do that use the parameter either §with-srilm.
$./configure –with-srilm=/home/.../.../Source/srilm

Type the command
$ make -j 4

At this stage, Compilation has been completed.

Install Moses Scripts

Compile Moses Scripts
The support scripts used by Moses are "released" by a Makefile which edits their paths to
match your local environment. First, you need to edit the Makefile definition of two
variables:

Create folder in /home/.../.../Sources/
$ mkdir moses-scripts

Edit trunk/scripts/Makefile

TARGETDIR=/home/.../.../Sources/moses-scripts
BINDIR=/home/.../.../Sources/bin

Move to folder trunk/scripts/
$ cd trunk/scripts/
$ make release

This will create a folder named moses-scripts/scripts-YYYYMMDD-HHMM with
released versions of all the scripts. You will call these versions when training/tuning
Moses. Moses scripts also require a SCRIPTS_ROOTDIR environment variable to be set.
The output of make release should indicate this.

Type the command
export SCRIPTS_ROOTDIR=/home/.../.../Sources/moses-scripts/scripts-YYYYMMDD-HHMM

Additional requirements:
Moses requires some additional tools for the training and evaluation processes. For
training, a tokenizer, and a lowercaser are necessary. These tools can be obtained from
the website of the 2007 ACL Workshop on Statistical Machine Translation at:
http://www.statmt.org/wmt07/scripts.tgz (Christian Federman, 2007)

Download scripts.tgz and extract them:
S tar xzf scripts.tgz

These scripts include:
 Tokenizer scripts/tokenizer.perl
 Lowercaser scripts/lowercase.perl

Prepare data
The first step is to prepare the parallel corpus data. It has to be tokenized, lowercased and
sentences which would be too long to handle (and their correspondences in the other
language) have to be removed from the corpus.

Tokenize training data
First we split out most punctuation from words. Special cases where splits do not occur
are documented in the code.

$ mkdir -p working-dir/corpus
$ scripts/tokenizer.perl -l id < working-dir/corpus/file.id > working-
dir/corpus/file.tok.id
$ scripts/tokenizer.perl -l en < working-dir/corpus/file.en > working-
dir/corpus/file.tok.en

Filter out long sentences
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/clean-corpus-n.perl working-
dir/corpus/file.tok id en working-dir/corpus/file.clean 1 50

Lowercase training data
$ scripts/lowercase.perl < working-dir/corpus/file.clean.id > working-
dir/corpus/file.lowercased.id
$ scripts/lowercase.perl < working-dir/corpus/file.clean.en > working-
dir/corpus/file.lowercased.en

Train Model
Once the corpus data is prepared, the actual training process can be started. translation
model training is done using:
Run training script: (enid → -f en -e id)
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-factored-phrase-
model.perl -scripts-root-dir bin/moses-scripts/scripts-YYYYMMDD-HHMM -root-dir
enid -corpus working-dir/corpus/file.lowercased -f id -e en -alignment grow-
diag-final-and -reordering-smooth msd-bidirectional-fe –lm 0:4:working-
dir/lm/file.id.lm:0

Run training script: (iden → -e en -f id)
$ bin/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-factored-phrase-
model.perl -scripts-root-dir bin/moses-scripts/scripts-YYYYMMDD-HHMM -root-dir
iden -corpus working-dir/corpus/file.lowercased -e id -f en -alignment grow-
diag-final-and -reordering-smooth msd-bidirectional-fe -lm 0:4:working-
dir/lm/file.en.lm:0

The command line switches are explained below:

• -corpus file corpus -e
• -e english
• -f foreign language
• -alignment word-to-word alignment
• grow-diag-final-and number of word alignment
• -reordering-smooth msd-bidirectional-fe for reordering alignment probability
• -lm Language Model parameter

The training process takes place in nine steps, all of them executed by the script:

1. Prepared data. Training data has to be provided sentence aligned in two file (etc
file.en and file.id).

2. Run Giza++. Giza++ is used to compute word alignments between two sentence
aligned corpora and mkcls is to generates the word classes.

3. Align words. To establish word alignments based on the two GIZA++ alignments.
4. Get lexical translation table. To estimate a maximum likelihood lexical translation

table.
5. Extract Phrases. All phrases are dumped into one big file.
6. Score Phrases. To estimate the phrases translation probability.
7. Building reordering model.
8. Build generation model.
9. Create configuration file. Create moses.ini

The training process takes a lot of time and memory to complete.

Test the moses.ini
$ echo 'former world number one' | ../../trunk/moses-cmd/src/moses -f
model/moses.ini > out

Moses (built on Aug 29 2006)
a beam search decoder for phrase-based statistical machine translation models
written by Hieu Hoang, with contributions by Nicola Bertoldi, Ondrej Bojar,
Chris Callison-Burch, Alexandra Constantin, Brooke Cowan, Chris Dyer, Marcello
Federico, Evan Herbst, Philipp Koehn, Christine Moran, Wade Shen, Richard Zens.
(c) 2006 University of Edinburgh, Scotland
command: ../../moses-cmd/src/moses -f moses.ini
Defined parameters (per moses.ini or switch):
config: moses.ini
input-factors: 0
lmodel-file: 0 0 4 ../lm/file.id.lm
mapping: T 0
ttable-file: 0 0 1 phrase-table
ttable-limit: 10
weight-d: 1
weight-l: 1
weight-t: 1
weight-w: 0
Start loading LanguageModel ../lm/file.id.lm : [0.00] seconds
Finished loading LanguageModels : [3.00] seconds
IO from STDOUT/STDIN
Start loading PhraseTable phrase-table : [3.00] seconds
Finished loading phrase tables : [3.00] seconds

Created input-output object : [3.00] seconds
End. : [3.00] seconds

$ vi out
mantan nomor satu dunia

4. Evaluation and Related Issues to SMT Design

4.1 Evaluation of Translation Quality

We believe more work on evaluation is called for. There was insufficient time during the
Phase 1.2 to fully evaluate the quality of output from the Toolkit prototype using Moses
Decoder, but we record some of our thoughts here.

Most MT evaluation regimes involve collecting human judgments over many sentences
and these regimes are expensive for individual researchers. In the commercial world, the
market provides a constant evaluation of translation software, albeit one that seems
currently driven by factors other than output text quality. In the final analysis, there is no
measure that can substitute for user satisfaction. But this leaves the individual researcher
in a bind.

It is ideal that human subjects fluent in both the source language and the target language
evaluate the material. Monolingual users of the target language alone are poorly prepared
to evaluate the content of the translation, despite reference translations. This point is
proven with the DARPA evaluations of 1000 when the quality of human translations of
variable quality, were also used for evaluation in an exam that asked evaluators to answer
questions on the content of a translated passage. A monolingual evaluator is best suited
for evaluating the fluency of the output, and not the content, unless the content can really
be assured, such as in treaties and other legal documents where the translator has a very
high incentive for ensuring that precise translations are produced.

Another concern that arises relates to the use of native speakers of the source language
and their capacity to determine the fluency of output in the target language, as well as
possible biases which allow them to find meaning in “word hash” output from MT that a
monolingual speaker might missing. In defining the scale for evaluation, we aim to
address this concern. Since the system is trained on texts with unique properties in terms
of lexicons used translation styles involved, and so on. We concluded that it was
reasonable to draw evaluation texts from the pre-training corpus. However, we strongly
emphasize that in no way is the system to be trained on texts that will later be used for
evaluation.

The speech recognition community has largely focused on word -error recognition rate, in
the belief that, this figure will ultimately correlate with user satisfaction. And it is easy to
measure. In finding text for evaluation, there were several concerns length, context, and
novelty. Because of limits on the computational complexity of decoding and training the
corpora was stripped of sentences of length above a certain bound, originally 10 tokens.
This processed corpus was then used for extracting sentences for evaluation. In addition,
for the length of the entire evaluation, we suggest a test-bed of 100 sentences. As 100
sentences seem like a reasonably small amount of work for evaluators per evaluation, we

decided upon 1000 test sentences from the outset (out of 50,000 sentences in PANL-
BPPT corpus).

Evaluation is done using the BLEU scoring tool. Assuming a reference translation
evaluation.en exists, we can evaluate the translation quality of output.en which was
translated from evaluation.de as follows:

To produce output evaluation from Moses ;
$./moses -f ./moses.ini <file_name.lowercase.id>
file_name.id.out
$./moses -f ./moses.ini <file_name.lowercase.en>
file_name.en.out

To produce output evaluation from MultiBLEU
$ multi-BLEU.perl file_name.lowercase.id < file_name.id.out >&
BLEU
$ multi-BLEU.perl file_name.lowercase.en < file_name.en.out >&
BLEU

4.2 Training Set Size vs. Translation Quality

One question we had about statistical machine translation was how much data do we
need? Are sentence pairs enough? If you go from one million sentence pairs to two
million, how much improvement will you see? We imagined that a lot of data is useful, if
you’ve never seen the phrase “real estate” before in your parallel corpus, then you
probably aren’t going to translate it correctly. It is mandatory in the machine learning
community to plot data size on the x axis vs. performance on the y axis, depicting a
learning curve of SMT.

This is particularly important in natural language processing, where we can frequently
purchase more data. The learning curve leads naturally to a second question what to plot
on the y axis. Machine translation is notoriously difficult to evaluate. It shares this
notoriety with other tasks that involve generating human language as opposed to
interpreting it. It is possible to evaluate a speech recognizer by counting word errors, not
so with a speech synthesizer. Likewise, it is easier to say whether a language
interpretation system got the right syntactic structure than to say whether a generation
system produced a good syntactic structure.

Machine translation involves both interpretation and generation. Following many of the
evaluation regimes that have been proposed for MT, we decided to go with either a
simple scoring mechanism or a simple relative ranking of translations from different
systems configurations. Researchers can try discard and adopt many new ideas without
involving human subjects. They can also compare results on common test data sets. As
mentioned above, even this is difficult to do in translation. Interestingly, many speech
researchers find it convenient to evaluate their ideas with respect to perplexity: a measure
of how well a statistical model fits or explains the data. For example, in language

modeling, the goal is to produce a program that assigns a probability P(e) to every string
of words e*. All these probabilities sum to 1 so there is only so much to go around. It is
possible to ask how good a language model is without making reference to word error
rate or any other task level measure. One simply asks for the particular number P(e) that a
particular instantiated model assigns to a particular text. If the text is good English, we
expect P(e) to be high if the text is bad English, we expect P(e) to be low. If we observe a
language model which is assigning probabilities the other way around, then it probably
isn’t a very good language model.

It is reasonable to ask for the P(e) that a model assigns to the text it was trained on. In this
case, a memorizing program would do very well, by assigning P(e|f). However, this
program would by definition assign P(e|f) to every other text e* and this will lead to a
very poor word error rate. Therefore a more reasonable evaluation is test set perplexity,
which is related to the probability that the model assigns to a previously unseen test
English text. The language model must lay bets on all kinds of strings. If it concentrates
its bets on certain subset of strings, then it must hope that when the previously unseen text
is revealed it is to be found in that subset. Because all probabilities sum to 1, increasing
our bet on one string necessarily means decreasing our bet on some other string.

It is typical in language modeling to bet at least something on every conceivable string e.
If we accidentally bet nothing on e, then our P(e) would be zero, and our perplexity would
be infinite. So, if a language model uses previously observed word pair frequencies in
constructing a probability score P(e) for a new string, it will typically smooth these
frequencies so as to accept a string that contains novel word pairs. We evaluated the
translation quality of the system using the BLEU metric. We compared our system to
Moses decoder, a leading SMT decoder.

The result of BLEU score is presented in Table 1, Figure 4, and Figure 5.

Table 1. BLEU score for English-to-Indonesia and Indonesia-to-English.

Word Eng-Ina Ina-Eng
60000 0.775 0.802

120000 0.802 0.802
180000 0.804 0.806
240000 0.824 0.806
280000 0.838 0.807
320000 0.843 0.812
380000 0.927 0.908
400000 0.928 0.918
500000 0.938 0.926

0 100000 200000 300000 400000 500000 600000
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

BLEU
Eng-Ina

Word

B
le

u

Figure.4 Graph of BLEU score for English-to-Indonesia

0 100000 200000 300000 400000 500000 600000
0.740

0.760

0.780

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

BLEU

Ina-Eng

Word

B
le

u

Figure 5. Graph of BLEU score for Indonesia-to-English

We computed all system on the 500.000 word into 9 block of word Indonesia-to-English
and English-to-Indonesia, and computed the BLEU Scored on these blocks individually.
Statistic of the data sets is shown in Table 1.

The language model used for all models (include decoding models and system
combination models) is a 4-gram model trained into 9 samples. We thus have 9 samples
of BLEU Score for each system. The first observation showed significantly increasing
BLEU score. In Figure 4 and Figure 5 show how BLEU score was improved with
increasing size of training corpus. Each curve on the graph represent corpus size, for
example, 400.000 word corpus have BLEU score of 0,918 and for the 500.000 word
corpus, BLEU score rise to 0,926. This concludes that the BLEU score have improve by
improving the translation model. Figure 5 shows the effect of maximal word count on
BLEU scores. With the increase of maximal word count, the BLEU score increased

dramatically. Finally, the performance of Statistical Machine Translation had to be
improving by using larger size of training data. If the data is huge, the performance could
better. A higher BLEU score indicates better translation.

5. Conclusion and Future Work

We have reported in this research work the development of statistical MT system for
Bahasa Indonesia – English. There is significant improvement in the output quality of
English-Indonesia translations compare to our previous work on symbolic approach.

Using 500K words training corpus, we were able to achieve 92.1% translation quality for
English to Bahasa Indonesia (easier task than other direction). Many interesting research
directions remain open. We can use different variation distributions other than the n-gram
model. Interpolation with other models is also interesting.

We analyzed currently used approach to automatic MT evaluation, the BLEU score. Our
show analysis that BLEU score have some flaws; one needs to understand these problems
to correctly interpret the reported BLEU scores. We also described a method to calculate
the statistical significance for BLEU using another Score metrics. These tests will give us
the confidence interval for the BLEU scores. In the future action is suggested by the
smaller sentences are much more fluent in translation compared to medium length and
long sentences.

The Future Work should be in the line of combining Symbolic-Statistical approaches to
increase the quality and accuracy of bidirectional Bahasa Indonesia – English Machine
translation. In order to achieve better system, the machine translation system will consist
of the above modules. Statistical method or combination of statistical and example-based
method (using the parallel corpus) will be employed. The hybrid machine translation
system will consist of the following modules:

• Morphological analyzer/POS Tagger: the derivational morphology of Bahasa

Indonesia, particularly that of verbal morphology, is quite complex, and therefore
requires careful analysis. Existing Indonesian morphological literature (Alwi, et.
al. 2003) will be surveyed and compared with the empirical evidence as found in
the corpus. The morphological analysis will be built using statistical methods such
as n-gram or HMM (Manning and Schütze 1999).

• Shallow parser/ Syntactic parser: completion of the morphological analysis will
enable the development of phrase parser. This parser will decide noun phrases,
verb phrases, adjective phrases, etc. in a sentence. This parser will be built using
statistical methods also. Furthermore, a robust syntactic parser can be build using
output of the shallow parser to decide syntactical structure of a sentence, i.e.,
which part of a sentence is the subject, predicate, object.

• Phrase Reordering System: this module will perform transformation of phrase
structure from Indonesian DM to English MD, to enable correct translation of

noun phrase and adjective phrase. This module will prepare the input sentence or
files prior of translation process, to enable better translation quality

• Machine Translation: the statistical MT system will contain 2 modules, each for
English-Indonesian and Indonesian-English translation modules.

• Generation system: this module will produce target sentences (Indonesian or
English) based on an intermediate representation created by the statistical MT.

References

1. Riza, Hammam, Budiono and Chairil Hakim. Resource Report: Building Parallel
Text for Multi-Domain Translation System, 7th Workshop on Asian Language
Resource, Proceedings of ACL-IJCNLP 2009, Singapore, 6-7 August 2009.

2. Jürgen Handke, The Structure of the Lexicon: Human Versus Machine, Walter de
Gruyter, 1995

3. Sonja Nießen and Hermann Ney. 2004. Statistical machine translation with scarce
resources using morpho-syntactic information. Computational Linguistics,
30(2):181–204, June.

4. Brown et al, 1993 “The Mathematics of Statistical Machine Translation:
Parameter Estimation”, Computational Linguistics, 19(2).

5. Brown, P.F., J Cocke, S A Della Pietra, V J Della Pietra, F Jelinek, J D Lafferty,
R L Mercer, and P S Roosin, P.S. (1990) A statistical approach to machine
translation. Computational Linguistics, 16(2):29–85.

6. Chris Callison-Burch and Miles Osborne. 2003. Cotraining for statistical machine
translation. In Proc. Of the 6th Annual CLUK Research Colloquium, Edinburgh,
UK, January.

7. Knight, 1997 “Automating Knowledge Acquisi-tion for Machine Translation”, K.
Knight, AI Magazine, 18(4).

8. Y. Al-Onaizan, U. Germann, U. Hermjakob, K. Knight, P. Koehn, D. Marcu, K.
Yamada, “Translating with Scarce Resources”, AAAI-2000.

9. B. Pang, K. Knight, and D. Marcu. “Syntax-based Alignment of Multiple
Translations: Extracting Paraphrases and Generating New Sentences,” NAACL-
HLT-2003.

10. K. Papineni, S. Roukos, T. Ward, J. Henderson, F. Reeder, “Corpus-based
Comprehen-sive and Disagnostic MT Evaluation: Initial Ara-bic, Chinese, French,
and Spanish Results”, NAACL-HLT-2002.

11. Wikipedia SMT, http://en.wikipedia.org/wiki/, retrieved August 08

12. Aston, G. and Burnard, L. The BNC Handbook Edinburgh: Edinburgh University
Press., 1998

13. Serge Sharof “In the garden and in the jungle: comparing genres in the BNC and
Internet, http://corpus.leeds.ac.uk/serge/webgenres/colloquium/, Sept 2008

14. Garside, R., Leech, G., and McEnery, T. Corpus annotation: linguistic information
from computer text corpora, Harlow: Addison-Wesley Longman, 1997.

15. S. Vogel, H. Ney and C. Tillmann. 1996. HMM-based Word Alignment in
Statistical Translation. In COLING ’96: The 16th International Conference on
Computational Linguistics, pp. 836-841, Copenhagen, Denmark

16. P. Koehn, F.J. Och, and D. Marcu (2003). Statistical phrase based translation. In
Proceedings of the Joint Conference on Human Language Technologies and the
Annual Meeting of the North American Chapter of the Association of
Computational Linguistics (HLT/NAACL).

17. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B.
Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst.
2007. Moses: Open Source Toolkit for Statistical Machine Translation. ACL
2007, Demonstration Session, Prague, Czech Republic

18. W. J. Hutchins and H. Somers. (1992). An Introduction to Machine Translation,
18.3:322. ISBN 0-12-36280-X

19. Sharon Goldwater and David McClosky. 2005. Improving stastistical machine
translation through morphological analysis. In Proceeding of the Conf. on
Empirical Methods for Natural Language Processing (EMNLP), Vancouver,
Canada, October.

20. Adam Lopez and Philip Resnik. 2005. Improved HMM alignment for languages
with scarce resources. In 43rd Annual Meeting of the Assoc. for Computational
Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven
Machine Translation and Beyond, pages 83–86, Ann Arbor, MI, June.

21. W. Weaver (1955). Translation (1949). In: Machine Translation of Languages,
MIT Press, Cambridge, MA.

22. Moses decoder http://www.statmt.org/moses/

23. Federman, Christian 2007. Very Large Language Model for Machine Translation,
Saarland University.

24. Arnold, D.J., Lorna Balkan, Siety Meijer, R.Lee Humphreys and Louisa Sadler
(1994). Machine Translation: an Introductory Guide, Blackwells-NCC, London.

25. Beesley K. and Karttunen, L. Finite-state non-concatenative morphotactics. In
Proceedings of the Fifth Workshop of the ACL Special Interest Group in
Computational Phonology (SIGPHON). 2000

26. Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger, Proceedings of the
Third Conference on Applied Computational Linguistics, ACL.

27. Manning, Christopher D. and Schütze, Hinrich. Foundations of Statistical Natural
Language Processing. Sixth edition. The MIT Press: Cambridge, USA, 2003

28. Merialdo, B. (1994). Tagging English Text with a Probabilistic Model,
Computational Linguistic, Vol. 20 No.2, and MIT Press.

Appendix A

Sample Translation Result
http://translator.iptek.net.id/PANL

English Bahasa Indonesia
Abbas and Haniyeh had originally been
due to meet on Saturday but the meeting
was put back to Sunday

Abbas dan Haniya mulanya telah
dijadwalkan bertemu Sabtu tapi
pertemuan itu diundur sampai Ahad

There is a progressive European position
towards dealing with the Palestinian
unity government

Ada kemajuan sikap Eropa ke arah
kesepakatan dengan pemerintah
persatuan Palestina

South Africa host the 2010 event Afrika Selatan akan menjadi tuan rumah
Piala Dunia 2010

The second ism sees that backwardness
is caused by existence of inequality and
gap among countries

Aliran kedua melihat bahwa
keterbelakangan itu disebabkan adanya
ketidakadilan dan kesenjangan antar
negara

The above opinion can be analysis from
two sides i e consumer and producer
sides

Anggapan di atas dapat kita telaah dari
dua sisi yaitu sisi konsumen dan
produsen

Asia has long been blighted by soccer
corruption scandals

Asia sudah lama dirusak oleh skandal
korupsi sepak bola

Several assessments and theories have
been produced by economists as solution
of inflation problem

Berbagai kajian dan teoripun telah
banyak dihasilkan oleh para ekonom
sebagai solusi dari persoalan inflasi

In term of income level widening gap
occurs

Dalam hal tingkat pendapatan terjadi
jurang kesenjangan yang makin lebar

In national context Indonesian awaken
was initiated on May 28 1908

Dalam konteks nasional kebangkitan
Indonesia di cetuskan pada 28 Mei 1908

Can be imagined how more than 300
years occupation at that time had
castrated frame of thinking and
mentality of Indonesian people

Dapat dibayangkan betapa lebih 300
tahun sudah penjajahan saat itu
mengebiri pola fikir dan mental rakyat
Indonesia

From what FIFA has said they have to
let him go Batista said in a television
interview

Dari apa yang dikatakan FIFA mereka
harus membolehkan dia pergi kata
Batista dalam wawancara televisi

