
Festival-si: A Sinhala Text-to-Speech System

Ruvan Weerasinghe, Asanka Wasala, Viraj Welgama and Kumudu Gamage

Language Technology Research Laboratory, University of Colombo School of Computing,
35, Reid Avenue, Colombo 00700, Sri Lanka

arw@ucsc.cmb.ac.lk,
{awasala,vwelgama,kgamage}@webmail.cmb.ac.lk

Abstract. This paper brings together the development of the first Text-to-
Speech (TTS) system for Sinhala using the Festival framework and practical
applications of it. Construction of a diphone database and implementation of the
natural language processing modules are described. The paper also presents the
development methodology of direct Sinhala Unicode text input by rewriting
letter-to-sound rules in Festival's context sensitive rule format and the
implementation of Sinhala syllabification algorithm. A Modified Rhyme Test
(MRT) was conducted to evaluate the intelligibility of the synthesized speech
and yielded a score of 71.5% for the TTS system described.

1 Introduction

In this paper, we describe the implementation and evaluation of a Sinhala text-to-
speech system based on the diphone concatenation approach. The Festival framework
[1] was chosen for implementing the Sinhala TTS system. The Festival Speech
Synthesis System is an open-source, stable and portable multilingual speech synthesis
framework developed at the Center for Speech Technology Research (CSTR), of the
University of Edinburgh.

TTS systems have been developed using the Festival framework for different
languages including English, Japanese [1], Welsh [12], [2], Turkish [9], and Hindi
[5], [8], Telugu [3], [5], among others. However, no serious Sinhala speech
synthesizer has been developed this far. This is the first known documented work on a
Sinhala text-to-speech synthesizer. The system is named “Festival-si” in accordance
with common practice.

The rest of this paper is organized as follows: Section 2 gives an overview of the
Sinhala phonemic inventory; Section 3 explains the diphone database construction
process; the implementation of natural language processing modules is explained in
section 4. Section 5 discusses the potential applications while Section 6 presents an
evaluation of the current system. The work is summarized and future research
directions and improvements are discussed in the last section.

2 Sinhala Phonemic Inventory

Sinhala is one of the official languages of Sri Lanka and the mother tongue of the
majority - 74% of its population. Spoken Sinhala contains 40 segmental phonemes; 14
vowels (/i/, /i:/, /e/, /e:/ ,/æ/, /æ:/, /ə/, /ə:/, /u/, /u:/, /o/, /o:/, /a/, /a:/) and 26 consonants
as classified below in Table 1 [4].

 Labial Dental Alveolar Retroflex Palatal Velar Glottal
Stops p b t̪ d ̪ ʈ ɖ k g
Affricates ʧ ʤ
Pre-nasalized
voiced stops

mb nd ̪ ɳɖ ŋg

Nasals m n ɲ ŋ
Trill r
Lateral l
Fricatives f v s ʃ h
Approximants j

Table 1. Spoken Sinhala Consonant Classification

3 Diphone Database Construction

This section describes the methodology adopted in the construction of Sinhala
diphone database.

Prior to constructing the diphone database, the answers to the following two
questions were investigated [9]: What diphone-pairs exist in the language? What
carrier words should be used?. Generally, the number of diphones in a language is
roughly the square of the number of phones. Therefore, 40 phonemes for Sinhala
identified in section 2 suggest roughly 1600 diphones should exist. The first phase
involved the preparation of matrices mapping all possible combinations of consonants
and vowels; i.e. CV, VC, VV, CC, _V, _C, C_ and, V_. Here ‘_’ denotes a short
period of silence. In the second phase, redundant diphones were marked to be omitted
from the recording. Due to various phonotactic constraints, not all phone-phone pairs
occur physically. (for instance, diphone “mb-ŋg” never occurs in Sinhala). All such
non-existent diphones were identified after consulting a linguist. Finally, 1413
diphones were determined.

The third phase involved in finding the answer to the second question; What carrier
words should be used?; In other words, to compile set of words each containing an
encoded diphone. Following the guidelines given in the Festvox manual [1] it was
decided to record nonsense words containing the targeted diphone. These nonsense
words were embedded in carrier sentences including four other nonsensical context
words. A care was taken when coining these nonsensical words, so that these words
act in accordance with phonotactics of the Sinhala language. The diphone is extracted
from the middle syllable of the middle word, minimizing the articulatory effects at the

start and end of the word. Also, the use of nonsensical words helped the speaker to
maintain a neutral prosodic context. The output of the third phase was 1413 sentences.

The fourth phase involved recording the sentences. A native professional male
speaker chosen for recording practiced the intelligibility and pronunciation of the
sentences. He was advised to maintain a constant pitch, volume, and fairly constant
speech rate during the recording. In order to maintain all of the above stated aspects,
recordings were limited to two 30-minute sessions per day. At each session, 100
sentences were recorded on average.

Recording was done in a professional studio with an optimum noise free
environment. Initially the sentences were directly recorded to Digital Audio Tapes,
and later transferred into wave files, redigitising at 44.1 kHz/16 bit quantization.

The most tedious and painstaking tasks were carried out in the fifth phase where
the recordings were split into individual files, and diphone boundaries hand-labeled
using the speech analysis software tool ‘Praat’1. Afterwards, a script was written to
transform Praat text-grid collection file into diphone index file (EST) as required by
Festival [1].

The method for synthesis used in this project is Residual Excited Linear Predictive
Coding (RELP Coding). As required by this method, pitch marks, Linear Predictive
Coding (LPC) parameters and LPC residual values had to be extracted for each
diphone in the diphone database. The script make_pm_wave provided by speech
tools [1] was used to extract pitch marks from the wave files. Then, the make_lpc
command was invoked in order to compute LPC coefficients and residuals from the
wave files [1]. Having tested synthesizing different diphones, several diphones were
identified problematic. An analysis of the errors revealed that most were due to
incorrect pitch marking caused by the use of default parameters when extracting the
pitch marks. The accurate parameters obtained by analyzing samples of speech with
Praat were set in the scripts as per the guidelines given in [8]. Moreover, it was
realized that lowering the pitch of the original wave files resulted in a more lucid
speech. A proprietary software tool was used to lower the recorded pitch, and
normalize it in terms of power so that all diphones had an approximately equivalent
power. Subsequently, modified make_pm_wave and make_lpc scripts were used
to extract the necessary parameters from the wave files. These overall post-processing
steps significantly improved the voice quality.

A full listing of the scripts used for recording and creating the diphone database is
available for download from http://www.ucsc.cmb.ac.lk/ltrl/projects/si.

4 Natural Language Processing Modules

When building a new voice using Festvox [1], templates of the natural language
processing modules required by Festival are automatically generated as Scheme files.
The NLP modules should be customized according to the language requirements.
Hence, the language specific scripts (phone, lexicon, tokenization) and speaker
specific scripts (duration and intonation) can be externally configured and

1 Available from: http://www.praat.org

implemented without recompiling the system [1], [9]. The NLP related tasks involved
when building a new voice are [1], [5]: defining the phone-set of the language,
tokenization and text normalization, incorporation of letter-to-sound rules,
incorporation of syllabification rules, assignment of stress patterns to the syllables in
the word, phrase breaking, assignment of duration to phones and generation of f0
contour.

4.1 The Phone Set Definition

The identified phone-set for Sinhala in section 2 is implemented in the file festvox/
ucsc_sin_sdn_phoneset.scm. The proposed set of symbol scheme is found to be a
versatile representation scheme for Sinhala phone-set. Along with the phone symbols,
features such as vowel height, place of articulation and voicing are defined. Apart
from the default set of features, new features that are useful in describing Sinhala
phones are also defined. e.g. whether a consonant is pre-nasalized or not. These
features will prove extremely useful when implementing prosody.

4.2 Tokenization and Text Normalization

The default text tokenization methodology implemented in Festival (which is based
on whitespace, and punctuation characters) is used to tokenize Sinhala text. Once the
text has been tokenized, text normalization is carried out. This step converts digits,
numerals, abbreviations, and non-alphabetic characters into word sequence depending
on the context. Text normalization is a non trivial task. Therefore, prior to
implementation, it was decided to analyze running text obtained from a corpus. Text
obtained from the category “News Paper > Feature Articles > Other” of the UCSC
Sinhala corpus BETA was chosen due to the heterogeneous nature of these texts and
hence better representation of the language in this section of the corpus2. A script was
written to extract sentences containing digits from the text corpus. The issues were
identified by thoroughly analyzing the sentence. Strategies to address these issues
were devised. A function is implemented to convert any number (decimal or integer
up to 1 billion) into spoken words.

In Sinhala, the conversion of common numbers is probably more complicated
when compared to English. In certain numerical expressions, the number may be
concluded from a word suffix. e.g. 5න් pahen (out of five), 1 වැනි paləvæni (1st). Such
expressions are needed to be identified by taking into consideration the added suffix
in a post-processing module. A function is implemented to expand abbreviations into
full words. Common abbreviations found by the corpus analysis are listed, but our
architecture allows easy incorporation of new abbreviations and corresponding words.
In some situations, the word order had to be changed. For example, 50% must be
expanded as “සියයට පනහ” - sijəjəʈə panəha (percent hundred), 50m should be
expanded as මීටර් පනහ - mi:ʈər panəha (meters fifty). All above mentioned functions

2 This accounts for almost two-thirds of the size of this version of the corpus

are called effectively by analyzing the context, and then accurate expansions are
obtained.

The tokenization and text normalization modules are implemented in festvox/
ucsc_sin_sdn_tokenizer.scm and capable of normalizing elements such as numbers,
currency symbols, ratios, percentages, abbreviations, Roman numerals, time
expressions, number ranges, telephone numbers, email addresses, English letters and
various other symbols.

4.3 Letter-to-Sound Conversion

The letter-to-sound module is used to convert an orthographic text into its
corresponding phonetic representation. Sinhala being a phonetic language has an
almost one-to-one mapping between letters and phonemes.

We implemented the grapheme to phoneme (G2P) conversion architecture
proposed by Wasala et al. in [10]. In this architecture, the UTF-8 textual input is
converted to ASCII based phonetic representation defined in the Festival. This
process takes place at the user-interface level. Owing to the considerable delay
experienced when synthesizing the text, it was decided to re-write the above G2P
rules in the Festival’s context sensitive format [1]. The rules were re-written in UTF-8
multi-byte format following the work done for Telugu language [3]. The method was
proven to work well causing no delay at all. The 8 rules proposed in [10] expanded up
to 817 rules when re-written in context sensitive format. However, some frequently
encountered important words were found incorrectly phonetized by these rules.
Hence, such words along with their correct pronunciation forms were included in
Festival’s addenda, a part lexicon. The letter-to-sound rules and lexicon are
implemented in festvox/ucsc_sin_lexi.scm.

Festival’s UTF-8 support is still incomplete; however, we believe the above
architecture as the best to deal with Unicode text input in Festival over other proposed
methods [12], [10].

4.4 Syllabification & Stress Assignment

Instead of Festival’s default syllabification function lex.syllabify.phstress
based on sonority sequencing profile [1], a new function (syllabify ‘phones)
is implemented to syllabify Sinhala words. In this work, syllabification algorithm
proposed by Weerasinghe et al. [11] is implemented. This algorithm is reported to
have 99.95% accuracy [11]. The syllabification module is implemented in
festvox/ucsc_sin_sdn_syl.scm.

4.5 Phrase Breaking Algorithm

The assignment of intonational phrase breaks to the utterances to be spoken is an
important task in a text-to-speech system. The presence of phrase breaks in the proper
positions of an utterance affects the meaning, naturalness and intelligibility of speech.
There are two methods for predicting phrase breaks in Festival. The first is to define a

Classification and Regression Tree (CART). The second and more elaborate method
of phrase break prediction is to implement a probabilistic model using probabilities of
a break after a word based on the part of speech of the neighboring words and the
previous word [1]. However, due to the unavailability of a Part-of-Speech (POS), and
a POS tagger for Sinhala, probabilistic model cannot be constructed yet. Thus, we
opted for the simple CART based phrase breaking algorithm described in [1]. The
algorithm is based on the assumption that phrase boundaries are more likely between
content words and function words. A rule is defined to predict a break if the current
word is a content word and the next is seemingly a function word and the current
word is more than 5 words from a punctuation symbol.

This algorithm, initially developed for English, has proved to produce reasonable
results for Sinhala as well. The phrasing algorithm is defined in
festvox/ucsc_sin_sdn_phrase.scm.

4.6 Prosodic Analysis

Prosodic analysis is minimal in the current system and will be implemented in the
future. The major challenge for building prosody for Sinhala is the lack of a POS tag-
set, POS tagger and tagged text corpus. An experiment was carried out to adapt
CART trees generated for an English voice prosody (f0 & duration) modules into
Sinhala. The CART trees were carefully modified to represent the Sinhala Phone-set.
The phone duration values were also hand modified to incorporate natural phone
durations. The above steps resulted in more natural speech when compared to the
monotonous speech produced before incorporating them. These adapted modules
(cmu_us_kal_dur.scm, cmu_us_kal_int.scm) are incorporated to the Festival-si
system.

5 Integration with Different Platforms

Festival offers a powerful platform for the development and deployment of speech
synthesis systems. Since most Linux distributions now come with Festival pre-
installed, the integration of Sinhala voice in such platforms is very convenient.
Furthermore, following the work done for Festival-te, the Festival Telugu voice [3],
the Sinhala voice developed here was made accessible to GNOME-Orca3 and
Gnopernicus4 - powerful assistive screen reader software for people with visual
impairments.

Motivated by the work carried out in the Welsh & Irish Speech Processing
Resources (WISPR) project [12], steps were taken to integrate Festival along with the
Sinhala voice into the Microsoft Speech Application Programming Interface (MS-
SAPI) which provides the standard speech synthesis and speech recognition interface
within Windows applications [13]. As a result of this work, the MS-SAPI compliant
Sinhala voice is accessible via any speech enabled Windows application. We believe

3 Available from: http://live.gnome.org/Orca
4 Available from: http://www.baum.ro/gnopernicus.html

that the visually impaired community would be benefited at large by this exercise
owing to the prevalent use of Windows in the community. The Sinhala voice also
proved to work well with Thunder5 a freely available screen reader for Windows.
This will cater to the vast demand for a screen reader capable of speaking Sinhala
text. It is noteworthy to mention that for the first time the print disabled community in
Sri Lanka will be able to work on computers in their local language by using the
current Sinhala text-to-speech system.

6 Evaluation

Text-to-speech systems can be compared and evaluated with respect to intelligibility,
naturalness, and suitability for used application [6]. As the Sinhala TTS system is a
general-purpose synthesizer, a decision was made to evaluate it under the
intelligibility criterion.

 A Modified Rhyme Test (MRT) [6], [9] was designed to test the Sinhala TTS
system. The test consists of 50 sets of 6 one or two syllable words which makes a
total set of 300 words. The words are chosen to evaluate phonetic characteristics such
as voicing, nasality, sibilation, and consonant germination. Out of 50 sets, 20 sets
were selected for each listener. The set of 6 words is played one at the time and the
listener marks the synthesized word. The overall intelligibility of the system from 20
listeners is found to be 71.5%. According to the authors' knowledge, this is the only
reported work in the literature describing the development of a Sinhala text-to-speech
system, and more importantly the first Sinhala TTS system to be evaluated using the
stringent Modified Rhyme Test.

7 Conclusions and Future Work

In this paper we described the development and evaluation of the first TTS system for
Sinhala language based on the Festival architecture. The design of a diphone database
and the natural language processing modules developed have been described.

 Future work will mainly focus on improving the naturalness of the synthesizer.
Work is in progress to improve the prosody modules. A speech corpus containing 2
hours of speech has been already recorded. The material is currently being segmented,
and labeled. We are also planning to improve the duration model using the data
obtained from the annotated speech corpus. A number of other ongoing projects are
aimed at developing a POS tag set, POS tagger and a tagged corpus for Sinhala.

Further work will focus on expanding the pronunciation lexicon. At present, the
G2P rules are incapable of providing accurate pronunciation for most compound
words. Thus, we are planning to construct a lexicon consisting of compound words
along with common high frequency words found in our Sinhala text corpus, which are
currently incorrectly phonetized.

5 Available from: http://www.screenreader.net/

Acknowledgement

This work was made possible through the PAN Localization Project,
(http://www.PANL10n.net) a grant from the International Development Research
Center (IDRC), Ottawa, Canada, administered through the Center for Research in
Urdu Language Processing, National University of Computer and Emerging Sciences,
Pakistan.

References

1. Black, A.W., Lenzo, K.A.: Building Synthetic Voices, Language Technologies
Institute, Carnegie Mellon University and Cepstral LLC. Retrieved from:
http://festvox.org/bsv/ (2003)

2. Jones, R.J., Choy, A., Williams, B.: Integrating Festival and Windows. InterSpeech
2006. 9th International Conference on Spoken Language Processing, Pittsburgh, USA
(2006)

3. Kamisetty, C., Adapa, S.M.: Telugu Festival Text-to-Speech System. Retrieved from:
http://festival-te.sourceforge.net/wiki/Main_Page (2006)

4. Karunatillake, W.S.: An Introduction to Spoken Sinhala, 3rd edn., M.D. Gunasena &
Co. ltd., 217, Olcott Mawatha, Colombo 11 (2004)

5. Kishore, S.P., Sangal, R., Srinivas, M.: Building Hindi and Telugu Voices using
Festvox. Proceedings of the International Conference On Natutal Language
Processing 2002 (ICON-2002), Mumbai (2002)

6. Lemmetty, S.: Review of Speech Synthesis Technology, MSc. thesis, Helsinki
University of Technology (1999)

7. Louw, A.: A Short Guide to Pitch-Marking in the Festival Speech Synthesis System
and Recommendations for Improvement. Local Language Speech Technology
Initiative (LLSTI) Reports. Retrieved from: http://www.llsti.org/documents.htm
(n.d.)

8. Ramakishnan, A.G., Bali, K., Talukdar, P.P., Krishna, N.S.: Tools for the
Development of a Hindi Speech Synthesis System, In 5th ISCA Speech Synthesis
Workshop, Pittsburgh (2004) 109-114

9. Salor, Ö., Pellom, B., Demirekler, M.: Implementation and Evaluation of a Text-to-
Speech Synthesis System for Turkish. Proceedings of Eurospeech-Interspeech 2003,
Geneva, Switzerland. (2003) 1573-1576

10. Wasala, A., Weerasinghe, R., Gamage, K.: Sinhala Grapheme-to-Phoneme
Conversion and Rules for Schwa Epenthesis. Proceedings of the COLING/ACL 2006
Main Conference Poster Sessions, Sydney, Australia (2006) 890—897

11. Weerasinghe, R., Wasala, A., Gamage, K.: A Rule Based Syllabification Algorithm
for Sinhala, Proceedings of 2nd International Joint Conference on Natural Language
Processing (IJCNLP-05). Jeju Island, Korea (2005) 438-449

12. Williams, B., Jones, R.J., Uemlianin, I.: Tools and Resources for Speech Synthesis
Arising from a Welsh TTS Project. Fifth Language Resources and Evaluation
Conference (LREC), Genoa, Italy (2006)

13. Microsoft Corporation.: Microsoft Speech SDK Version 5.1. Retrieved from:
http://msdn2.microsoft.com/en-s/library/ms990097.aspx (n.d.)

