
JKimmo: A Multilingual Computational Morphology Framework for

PC-KIMMO

Md. Zahurul Islam and Mumit Khan

Center for Research on Bangla Language Processing, Department of Computer Science and

Engineering, BRAC University, Dhaka Bangladesh

zahurul@bracu.ac.bd, mumit@bracu.ac.bd

Abstract

Morphological analysis is of fundamental interest

in computational linguistics and language processing.

While there are established morphological analyzers for

mostly Western and a few other languages using

localized interfaces, the same cannot be said for Indic

and other less-studied languages for which language

processing is just beginning. There are three primary

obstacles to computational morphological analysis of

these less-studied languages: the generative rules that

define the language morphology, the morphological

processor, and the computational interface that a

linguist can use to experiment with the generative rules.

In this paper, we present JKimmo, a multilingual

morphological open-source framework that uses the

PC-KIMMO two-level morphological processor and

provides a localized interface for Bangla morphological

analysis. We then apply Jkimmo to Bangla

computational morphology, demonstrating both its

recognition and generation capabilities. Jkimmo’s

internationalization (i18n) frame-work allows easy

localization in other languages as well, using a property

file for the interface definitions and a transliteration

scheme for the analysis.

1. Introduction

Morphological analysis is a key component of Natural

Language Processing (NLP) and Computational

Linguistics, and is a fundamental requirement of most

advanced language processing applications from

grammar checkers to automatic machine translators.

With the current wave of work in Bangla Computational

Linguistics, the need for a robust morphological

analyzer has become critical. Our goal is to create a

robust and reusable framework for doing morphological

analysis of Bangla. There are three primary components

in such a robust morphological analyzer for a language:

the generative morphological rules, the underlying

morphological processor, and the computational

interface through which the user experiments with the

language morphology. There is ongoing work in

developing the computational morphology for Bangla,

using both simple rewriting rules and feature unification

grammars [1-4]. There are also well-established

implementations for two-level morphological analyzers,

with PC-KIMMO being one of the more widely

available ones that implements Kimmo Koskenniemi's

two-level morphology [5-8]. What is missing however is

the framework in which Bangla morphology can be

implemented using Bangla language interface. The

available processors were created before the widespread

use of Unicode [9], predominantly using the Latin script.

This creates an obstacle in creating us-able local

language interfaces, making it difficult to experiment

with the morphology of languages that use complex

scripts, such as the Indic scripts including Bangla.

Instead of creating yet another two-level morphological

processor, we chose instead to Jkimmo by harnessing

the existing PC-KIMMO implementation [8], using the

generative rules defined by existing efforts, and created

a software interface that allows Bangla language

interface to PC-KIMMO. Our implementation uses Java

Native Interface [10] as the bridge between PC-KIMMO

and the Unicode-enabled user interface, allowing the

user to experiment in any script supported by the

Unicode standard. Since the analysis framework uses

standard internationalization (i18n) schemes, it is

trivially localized to any language by using property

files for interface definitions, and transliteration schemes

for the Latin-Unicode-Latin conversion needed to inter-

face to PC-KIMMO backend.

In section 2, we review some related work including

work on Bangla morphological analyzers, followed by

our methodology and implementation details in sections

3 and 4, and then conclude with some discussion of

Jkimmo.

2. Related Work

Pykimmo [11] is a python implementation of PC-

KIMMO developed by Carl de Marcken, Beracah

Yankama, and Rob Speer at Massachusetts Institute of

Technology. It was designed for “laboratory”

experimentation with two-level morphological rules.

However, since Pykimmo uses Latin scripts for both

input and output, it requires the use of transliteration and

English language user interface to interact with the

system, thereby limiting its use. Another limitation of

Pykimmo is that it’s based PC-KIMMO version 1,

which implements the two-level rules and the lexicon,

but does not implement the grammar needed to describe

non-concatenative and otherwise complex morphology.

An effort for creating an interface for Bangla

Working Papers 2004-2007

 57

morphological analysis has been developed at the Indian

Institute of Technology - Kharagpur [12], which

provides a web interface to the underlying

morphological engine using the iTRANS transliteration

scheme. Another such effort is the Xerox Arabic

Morphological Analyzer and Generator [13], created

with the Xerox Finite-State Technology. It has a Java

Applet interface and uses ISO-8859-6 and Unicode

character encodings. It is notable that none of these

systems, unlike Jkimmo, is easily extendible to other

languages using Unicode-encoded input and output.

3. Methodology

3.1. PC-KIMMO overview

PC-KIMMO is a morphological analyzer based on

Kimmo Koskenniemi's Two-Level Morphology model

[5]. The first implementation of the two-level model was

PC-KIMMO version 1, developed by the Summer

Institute of Linguistics in 1990. PC-KIMMO

implemented the rules and lexicon components of the

two-level model using two files: (i) the rules file (.RUL)

which specifies all the orthographic rules, and (ii) the

lexical file (.LEX) which specifies all the lexicons,

classification of lexicons and morphotactic constraints

of these classes. [5] The structure of PC-KIMMO is

shown in Figure 1.

Figure 1: Structure of PC-KIMMO parser version 1

One limitation of the version 1 was its inability to

perform syntactic parsing using a word grammar. This

limitation was removed in PC-KIMMO version 2 with

the introduction of a word grammar, adding it as the

third component. [7] The version 2 included a feature-

structure unification based chart parser capable of

producing parse trees based on Shieber’s PATR-II

formalist. [14] The word grammar is specified using a

grammar (.GRM) file, so this version requires a total of

3 files for morphological processing. PC-KIMMO has

two functional components: generation and recognition.

3.2. Generation and Recognition

The generator uses the two-level rules to recursively

compute the surface form from the lexical form. The

rules are encoded using a finite automata that can be

automatically generated from the rules.

The recognizer performs the inverse task to compute the

lexical form from the surface form. Unlike the

generator, the recognizer needs a lexicon in addition to

the two-level rules.

4. Implementation

JKimmo is a graphical user interface (GUI)

implemented in the JAVA programming language, using

PC-KIMMO version 2 as the back end. PC-KIMMO has

tree main component: two level orthographic rule,

lexicon and grammar. These are also the main

components of Jkimmo; in addition, JKimmo has

another component – the transliteration scheme. The

rule file must be loaded for morphological generation

and both the rule and lexicon files must be loaded for

morphological recognition. For generation, JKimmo

does not need the grammar file; for recognition, the

grammar file is optional. Since it uses PC-KIMMO as

the backend, JKimmo automatically uses feature

unification grammar.

4.1. JKimmo components

4.1.1. Transliteration file. The original PC-KIMMO

software is written in C programming language and uses

only Latin alphanumeric characters for input and output

purposes. For inputs using scripts other than Latin, the

user has to come up with his/her own transliteration

scheme that uses Latin characters corresponding to

characters of the non-Latin script. Viewing and

understanding the input and output strings in such a way

can be cumbersome and non-intuitive for the user.

JKimmo solves this problem in a modular, abstract

fashion. It requires that the whole transliteration scheme

be written down in a separate file. The user can then

load that transliteration file. Once the transliteration file

is loaded, the user can input strings and view output

strings in his preferred language in an intuitive way.

Transliteration scheme for Bengali language is given in

Table 1.

4.1.2. Rule file. Two level orthographic rules are

required for JKimmo. The rule file is same as PC-

KIMMO rule file, reproduced here from the reference

manual: “the general structure of the rules file is a list of

declarations composed of a keyword followed by data.

The set of valid keywords in a rules file includes

COMMENT, ALPHABET, NULL, ANY,

BOUNDARY, SUBSET, RULE, and END. The

COMMENT, SUBSET and RULE declarations are

optional and also can be used more than once in a rules

file. The END declaration is also optional, but can only

be used once”. [7] PC-KIMMO only recognizes Latin

characters in rule file. To implement rule for language

that uses other than Latin script we must follow the

transliteration scheme. There is a free rule compiler for

PC-KIMMO called kgen is available. It takes rule

specification and it generate rule for PC-KIMMO. There

are more free tools available that can be used for rule

generation.

Bengali

 58

Figure 2: Communication protocol of JKimmo and

PC-KIMMO

Figure 3: Main components of JKimmo

4.1.3. Lexicon file. The lexicon contains the indivisible

words and morphemes in their lexical forms, i.e., the

lexical items, as well as the morphotactic constraints. Its

primary task is to decompose a word into its constituent

morphemes using a simple positional analysis. The

positional analysis need only go far enough to ensure

that all correct parses are produced but not too many

incorrect parses. Co-occurrence restrictions between

morpheme positions are best handled in the word

grammar, not the lexicon, because that will raise

complexities of morphotactic analysis. The format for

the lexicon is reproduced from the reference manual: “A

lexicon consists of one main lexicon file plus one or

more files of lexical entries. The general structure of the

main lexicon file is a list of keyword declarations. The

set of valid keywords is ALTERNATION, FEATURES,

FIELDCODE, INCLUDE, and END.” [7] To write

lexicons that will be used in JKimmo for language that

use other than Latin script then we have to follow the

transliteration scheme.

4.1.4. Grammar file. The word grammar is encoded in

the grammar file, which is optional for PC-KIMMO and,

consequently, JKimmo. The grammar file has three

sections: (i) feature abbreviations, (ii) category

templates, and (iii) grammar rules. As in any feature-

structure language, the grammar rules specify the feature

constraints.

Table 1: Bengali transliteration scheme

Bangla Latin Bangla Latin Bangla Latin Bangla Latin Bangla Latin
◌� ^ ◌� a � G � N � R
� A �◌ I 	 G
 t � L
� F ◌ I � ? � T � S
� H ◌� u � C � d � $
� L ◌� U � C � D � S
� M ◌� R � J � n � H
 Q !◌ e " J # p $ '
% V &◌ E ' Q (P) "
* W !◌� o + V , b - Y
. X !◌/ O 0 W 1 B ◌2 %
3 Z 4 k ড X 6 m ◌7 &
8 F 9 K ঢ Z য y ◌< ~

 Figure 4a: Generation example Figure 4b: Recognition example

Working Papers 2004-2007

 59

4.1.5. Localized interface. JKimmo provides the

choice of language for its interface. Currently JKimmo

only support Bangla and English language for its

interface. New language can be added by adding a new

java ResourceBundles property file for that language

[15].

4.2. Algorithm

The algorithms used by the underlying

morphological processor are described in [7]. JKimmo

communicates with the PC-KIMMO API using the two

data structures: KimmoData and KimmoResult. The

KimmoData data structure collects the information

used for data processing within the PC-Kimmo

functions, and designed to hold as much of the

processing parameters as possible to reduce the

number of parameters needed for each function. The

KimmoResult data structure contains a single result

from one of the PC-Kimmo processing functions

(applyKimmoGenerator, applyKimmoRecognizer). It

can be used to build a linked list for ambiguous results.

These algorithms pertain only to the communication

between JKimmo interface and PC-KIMMO library.

We have used JNI as a bridge between JKimmo

interface and PC-KIMMO library. We have used both

PC-KIMMO data structures to access internal

components. The JNI also have some native methods

for communication. This algorithm is for languages

that do not use Latin script. For languages that uses

Latin script just omit transliteration related portion.

4.2.1. The generator. This algorithm has some

perquisites like transliteration file and rule file must be

loaded. The algorithm works as follows:

 1 If the input specified in the lexical form is

empty but user click on generate button

 1.1 JKimmo will do nothing

 2 For each input pair containing the first

character in the lexical form as the lexical

character, do the following steps:

 2.1 If input string is correct:

 2.1.1 Translate the Unicode

string to Latin characters string.

 2.1.2 JKimmo interface calls

generate native method with

translated string as argument.

 2.1.3 Native method calls

applyKimmoGenerator function of

PC-KIMMO library. PC-KIMMO

library save the result into result data

structure.

 2.1.4 JKimmo interface now call

getResult native method to get the

result.

 2.1.5 Native method extracts the

result (Latin character string) from

KimmoResult data structure and

sends to JKimmo interface.

 2.1.6 JKimmo interface translate

the Latin characters string to

Unicode string and show the result.

 2.2 If input string is wrong

 2.2.1 JKimmo will show a

warning message and do nothing.

Figure 4a shows an example of JKimmo generation.

4.2.2. The recognizer. This algorithm also has some

perquisites like transliteration file, rule file, lexicon

must be loaded and grammar is optional. The

algorithm works as follows:

 1 If the input (surface) is empty but user click

on recognize button

 1.1 JKimmo will do nothing

 2 For each input pair containing the first

character in the surface form as the lexical

character, do the following steps:

 2.3 If input string is correct

 2.3.1 Translate the Unicode

string to Latin characters string.

 2.3.2 JKimmo interface calls

recognize native method with

translated string as argument.

 2.3.3 Native method calls

applyKimmoRecognizer function of

PC-KIMMO library. PC-KIMMO

library save the results into result

data structure.

 2.3.4 JKimmo interface now call

getResult and getGloss native

method to get the results.

 2.3.5 Native method extracts the

results (Latin character string) from

KimmoResult data structure and

send to JKimmo interface.

 2.3.6 JKimmo interface translate

the Latin characters string to

Unicode string and show the results.

 2.4 If input string is wrong

 2.4.1 JKimmo will show a

warning message and do nothing.

Figure 4b shows an example of JKimmo recognition.

Bengali

 60

5. Conclusion

Our goal is to develop a reusable and robust open-

source framework for computational morphological

analysis of Bangla. We started with the existing efforts

in defining the Bangla generative morphology for the

rules, PC-KIMMO version 2 for the two-level

morphological processor for the backend, and

developed a Unicode-based multilingual interface,

JKimmo, that can be used to experiment with Bangla

morphology using Bangla language interface. JKimmo

has been developed from the ground up as

internationalized software, which means that it can be

localized in any language using standard localization

idioms such as property files and transliteration

schemes.

Some of the limitations of the current

implementation of JKimmo are however noteworthy.

One of most useful features of PC-KIMMO version 2

is creating the parse tree when recognizing a surface

form. JKimmo currently only shows the lexical form

and its glosses. The other limitation is in error

handling, specifically where the errors are generated

by the back-end. The next release of JKimmo will

correct both of the limitations.

6. Acknowledgement

This work has been supported in part by the PAN

Localization Project (www.panl10n.net), grant from

the International Development Research Center,

Ottawa, Canada, administrated through Center for

Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,

Pakistan. We would also like to thank Arnab Zaheen,

Naira Khan and other members of our research group.

7. References

[1] P. Sengupta and B.B. Chaudhuri, “Morphological

processing of Indian languages for lexical interaction

with application to spelling error correction”,

Sadhana, Vol. 21, Part. 3, 1996, pp. 363-380.

[2] S. Bhattacharya, M. Choudhury, S. Sarkar and A.

Basu, “Inflectional Morphology Synthesis for Bengali

Noun, Pro-noun and Verb Systems”, Proc. of the

:ational Conference on Computer Processing of

Bangla, Dhaka, Bangladesh, March, 2005, pp. 34 - 43.

[3] S. Dasgupta and M. Khan, “Morphological Parsing

of Bangla Words Using PC-KIMMO”, Proc. 7th

International Conference on Computer and

Information Technology, ICCIT 2004, Dhaka,

Bangladesh, Dec., 2004.

[4] S. Dasgupta and M. Khan, “Feature Unification for

Morphological Parsing in Bangla”, Proc. 7th

International Conference on Computer and

Information Technology, ICCIT 2004, Dhaka,

Bangladesh, 2004.

[5] K. Koskenniemi, “Two-level morphology: a

general computational model for word-form

recognition and production.”, Publication :o. 11.

Helsinki: University of Helsinki Department of

General Linguistics, 1983.

[6] E.L. Antworth, “PC-KIMMO: a two-level

processor for morphological analysis”, Occasional

Publications in Academic Computing :o. 16, Dallas,

TX: Summer Institute of Linguistics, 1990.

[7] E.L. Antworth. “Morphological Parsing with

Unification-based Word Grammar”, A paper presented

at North Texas Natural Language Processing

Workshop, May 23, 1994.

[8] PC-KIMMO available at

http://www.sil.org/pckimmo/

[9] Unicode 4.1 specification, available from

http://www.unicode.org/

[10] Java Native Interface Documentation available at

http://java.sun.com/j2se/1.4.2/docs/guide/jni/

[11] Pykimmo is available at

http://web.mit.edu/course/6/6.863/pykimmo/

[12] Bengali Morphological Analyzer demo, available

at www.mla.iitkgp.ernet.in/morph_analyzer.html

[13] K.R. Beesley, “Finite-State Morphological

Analysis and Generation of Arabic at Xerox Research:

Status and Plans in 2001”, ACL Work-shop on Arabic

Language Processing: Status and prospects (Invited

talk), 2001.

[14] S.M. Shieber, “An introduction to unification-

based approaches to grammar”, CSLI Lecture Notes

No. 4. Stanford, CA, 1986.

[15] Java Localization documentation at

http://java.sun.com/developer/technicalArticles/Intl/Re

sourceBundles/

