
A Comprehensive Bangla Spelling Checker

Naushad UzZaman and Mumit Khan

Center for Research on Bangla Language Processing, BRAC University, Bangladesh

naushad@bracuniversity.ac.bd, mumit@bracuniversity.ac.bd

Abstract

We present a comprehensive Bangla spelling

checker that improves the quality of suggestions for

misspelled words. The complex rules for Bangla

spelling presents a significant challenge in producing

suggestions for a misspelled word when employing the

traditional methods; one must take phonetic similarity

into account for suggested alternatives to be

reasonably accurate. In Bangla there are several

algorithms available for spell checking, however,

none of these considers the complex orthographic

rules of Bangla. As a result, spelling checker

application does not perform well. In this paper, we

describe the process of checking the spelling of a

Bangla document (i.e. detecting misspelled words,

generating suggestions for misspelled word, and

ranking the suggestions), compare the methodologies

with existing solutions available in the literature, and

then propose solutions for each step. Finally, we

conclude by showing the performance and evaluation

of our proposed solution.

1. Introduction

There are more than 200 million native speakers

of Bangla, the majority of who live in Bangladesh and

in the Indian state of West Bengal [1]. However, there

has been very little research effort in the

computerization of the Bangla language, leading to a

dearth of Bangla natural language processing

applications and tools. A Bangla spelling checker, one

such application, is an essential component of many of

the common desktop applications such as word

processors as well as the more exotic applications,

such as a machine language translator. One particular

challenge facing the development of a usable spelling

checker for Bangla is the language’s complex

orthographic rules, in part a result of the large gap

between the spelling and pronunciation of a word [2].

One impact of this complexity can be seen in the

observation that two of the most common reasons for

misspelling are (i) phonetic similarity of Bangla

characters and (ii) the difference between grapheme

representation and phonetic utterances [3]. While there

has been a sustained effort of late to develop a usable

spelling checker, none of the solutions has been able to

handle the full orthographic complexity of Bangla [4-

9].

In the following sections we will describe the

steps in the process of checking the spelling of a word:

a) detect whether it is misspelled or not,

b) generate suggestions if it is misspelled, and

c) rank the suggestions so that the most likely

candidate is placed first.

We then propose a solution for each of these

steps, and compare our solution with those in the

literature. Lastly, we show the performance and

evaluation of our proposed solution.

2. Detecting a Misspelled Word

To give suggestions for a misspelled word, the

first step for a spelling checker is to detect the

misspelled word. But before detecting a misspelled

word, we need to know what a misspelled word is.

Misspelled words or errors can be of many types, such

as typographical error, cognitive error, etc.

Kukich [10] breaks down human typing errors

into two classes, typographical error and cognitive

error. Typographical errors (e.g., misspelling ‘spell’ as

‘speel’) generally occur due to people’s mistakes while

typing. Cognitive errors (e.g., misspelling ‘separate’ as

‘seperate’) are caused by writers who do not know

how to spell the word.

Cognitive errors include phonetic errors (e.g.,

misspelling ‘separate’ as ‘separate’), substituting a

phonetically equivalent sequence of letters and

homonym errors (e.g., misspelling ‘peace’ as ‘piece’),

happens from typographical errors (insertion, deletion,

transposition, substitution), which accidentally

produce a real word (e.g., misspelling ‘there’ as

‘their’), or because the writer substituted the wrong

spelling of a homophone or near-homophone (e.g.,

‘dessert’ as ‘desert’, or ‘piece’ as ‘peace’, and vice

versa).

Working Papers 2004-2007

 69

2.1. Previous work on detecting misspelled

word in Bangla

Detecting a misspelled word for a language is

trivial for typographical errors and the cognitive

phonetic errors. But cognitive homonym errors, which

are real word errors
1
, cannot be detected easily. We

need to consider the context of a word to detect a

misspelled word in this case.

For Bangla, approximate string matching

algorithms [4] and a direct dictionary look up method

[5] have been used so far for the detection of

typographical errors and cognitive phonetic errors. In

our spelling checker, we used the direct dictionary

look up method for detecting a misspelled word. But

none of these methods, including our method, deals

with homonym errors.

3. Generating Suggestions for Misspelled

Words

After detecting the misspelled word we need to

generate the suggestions for it. Before going in to the

details of suggestion generation, we will discuss the

error patterns in usual typing and also the phonetic

error patterns found in Bangla language.

3.1. Error pattern of typographical error

Damerau [11] finds that 80% of all misspelled

words (non-word errors) in a sample of human

keypunched text were caused by single error

misspellings, i.e., any of the following errors:

1. Insertion. For example: mistyping the as ther

2. Deletion. For example: mistyping the as th

3. Substitution. For example: mistyping the as

thw

4. Transposition. For example: mistyping the as

the

Damerau’s [11] report was for English and

although the case for Bangla is not the same, it is

similar to Damerau [11].

B.B. Choudhury [4] finds that 41.36% of all

misspelled words, out of 15,162,317 words, were

caused by single error misspellings (which he termed

as error zone length = 1) and 32.94% with error zone

length = 2.

It is clear from the discussion above that we can

generate good suggestions for typographical errors in

1 By ‘real word error’ we mean a correctly-spelled word but not the

intended word in the sentence, thus making the sentence

syntactically or semantically ill-formed or incorrect.

Bangla if we consider the words for errors up to 2-edit

distance
2
. Edit distance is not the same as error zone in

[4] - error zone is a subset of edit distance. So, if we

consider 2-edit distance, then 2-error zone is also

automatically considered.

3.1.1. Previous work on typographical error.

Almost all the major Bangla spelling checkers handle

up to 2-edit distance, which includes more than 70% of

the errors [4]. B.B. Choudhury [4] handles it using

error zone length; Abdullah and Rahman [5] handle it

using their unique recursive simulation method.

3.1.2. Our proposal for generating suggestion for

typographical error. It is clear that other methods

handle typographical errors up to 2-edit distance. Their

technique can be used but we preferred our own

effective way of handling this case. B.B. Choudhury’s

method [4] needs twice the amount of memory for the

reverse dictionary. Abdullah and Rahman’s [5]

recursive simulation, on the other hand, trades off time

for space, requiring more than m^(2*n+1) dictionary

lookups for an ‘n’ length word, where ‘m’ is the

average number of letters in their circular list. The

value of ‘m’ is an integer, which varies generally from

1-5 and is usually more than 2 or 3.

In our case, for a particular misspelled word, we

define a subset of the lexicon that is then used to

produce the list of suggestions. This subset, called the

“short list”, consists of the words whose lengths are

within +/- 2 units of the length of the misspelled word,

as shown below.

Length of short-listed words = words

with length of misspelled word OR

length of misspelled word + 1) OR

length of misspelled word – 1) OR

length of misspelled word + 2) OR

length of misspelled word – 2)

(1)

From the short-listed words, we find the words

with edit distance of 2 from the misspelled word. Note

that only the words in the short list will have a

maximum edit distance of 2 from the misspelled word,

which obviates the need for computing the edit

distances of the entire lexicon from the misspelled

word.

2 Edit distance [12] is defined as the number of insertions,

deletions, and substitutions required changing on string into

another. B.B. Choudhury [4] uses a technique to find the position in

the word where the error occurred. This error length is the error

zone length.

Bengali

 70

Typographical suggestion list =

Words having Edit Distance3

(misspelled word, each word of

short-list words) less than and

equals to 2.

(2)

3.2. Error pattern for cognitive phonetic error
Bangla has complex orthographical rules. One

reason behind the existence of these rules is a large

number of words in Bangla are from Sanskrit, an

ancestral predecessor of Bangla. However, these

words have either been modified in terms of

pronunciation or both in terms of spelling and

pronunciation. Thus there exists a gap between

spelling and pronunciation requiring complex

orthographical rules.

Below we will discuss the challenges for

generating suggestions for phonetic error, which we

face because of complex orthographical rule described

above.

1. There are groups of phonetically similar

characters in Bangla; for example, NA (�)
and NNA (�); SA (�), SHA (�) and SSA (�),
etc. The contrast between long and short

vowels in the script is also in the modern

version of the spoken language.

2. Bangla has many consonant clusters or

conjuncts with unusual pronunciations (i.e.,

�, �, etc.): let us consider �. � = �+◌
 +�; ��

[KA HASANT SSA TA] /k
hɔt̪o/ is

pronounced as �� [KHA TA] /khɔt̪o/, where �
does not have any sound.

3. Bangla has different uses of Phalaa's, the

cluster final form of the semi-vowels in

Bangla (BA, MA, YA, RA and LA), which

are represented using a distinct sign-form. BA

phalaa for example has a distinct

pronunciation from a BA in any other

position in a cluster or in a standalone

configuration.

4. Different pronunciation of letters or conjuncts

in different contexts: consider again �. At the
beginning of word, it is pronounced as � /kh/.

(�� → �� /khɔt̪o/); in the middle or at the end

of a word, it is pronounced as �� /kkh/, (�

→ �� /d ̪okkho/).
5. Multiple pronunciations of some letters in the

same context, such as � with �: According to
Bangla phonological rules, � should be

3 Edit Distance (string s1, string s2) returns an integer, which is the

edit distance [12] between two strings.

pronounced as � or � and � should be
pronounced as ����: ���� → ����� /aovan/.
However, most native speakers pronounce

these words the same way as it is written. For

example, ���� is usually pronounced as
����� /ahobhan/. Both pronunciations are
considered correct.

3.2.1. Previous work on phonetic error. Phonetic

error for Bangla has been noticed by few researchers

before but none of them did an in depth analysis of this

error.

B.B. Choudhury [4] mentions the phonetic

problem and solved this by representing phonetically

similar vowels and consonants by a single code;

however, this solves only the first problem mentioned

above, and it does not deal with other problems that

have been mentioned.

Abdullah and Rahman [5] mention the phonetic

problem as well and solved this by their own circular

list mechanism; however, this too deals with only the

first problem mentioned above. Even though Abdullah

and Rahman [5] discuss the third problem mentioned

above, they do not consider the full phonetic

complexity of Bangla orthographic rules.

Haque and Kaykobad [6] propose a phonetic

encoding [13] based on Soundex [14] for spelling

checking of Bangla, which is also limited in that it

handled the first problem and the trivial cases of the

third one.

UzZaman and Khan [7] propose a phonetic

encoding also based on Soundex, with the same

limitations as above. In addition, their encoding is

more fine-grained than Haque and Kaykobad’s [6],

and it handled some trivial cases of Bangla consonant

clusters or jukhtakhors.

3.2.2. Our proposal for generating suggestion for

phonetic error. None of these mechanisms was good

enough to face the challenges of phonetic errors

described earlier in this paper. We used the phonetic

encoding approaches used for Western languages such

as English to detect and correct the phonetic errors in

Bangla. Before proceeding to our phonetic encoding,

we will discuss briefly the English phonetic encoding.

3.2.2.1. Phonetic encoding in English. Phonetic

encoding codes a word based on how it is pronounced.

For this reason similar sounding words have same

phonetic code. So, if phonetic encoding can represent

its pronunciation properly then we can easily solve the

problem of phonetic error. In the case of applications

Working Papers 2004-2007

 71

using the phonetic encoding, we will only check the

codes not the words.

Back in 1918, Odell and Russell proposed

Soundex, the first phonetic encoding for English to use

in the US census. Soundex partitions the set of letters

in to seven disjoint sets, assuming that the letters in the

same set have similar sound. Each of these sets is

given a unique key, except for the set containing the

vowels and the letters h, w, and y, which is considered

to be silent and is not considered during encoding. For

example, both realize and realise has been coded to

‘642’ in Soundex encoding, which works well for the

trivial cases but fails to give same code to words where

letters change its pronunciation in different contexts.

For example, knight, night and nite are similar

sounding words but Soundex does not give the same

code to these words.

It is clear that to give a phonetic code in English

we also need to consider the context of letters. For

example, in the word knight, by analyzing the language

we can find that the ‘k’ at the initial position followed

by a ‘n’ is silent and ‘gh’ together is silent if it is not at

the end or before a vowel, considering these cases

before giving a phonetic code can generate same code

for knight, night and nite. Lawrence Philips in 1990

invented a phonetic encoding called Metaphone

encoding [15,16] that handles these context issues

before giving a phonetic code. This gives accurate

phonetic encoding for English in most of the cases but

there was another problem that Philips followed. There

are some words, which have multiple established

pronunciations. For example, Basinger is pronounced

in both ways as “Basin-gger” or “Basin-jer”. But in

Metaphone encoding we only get one code, which

cannot represent multiple codes (which eventually is

multiple pronunciation) at the same time. If we can

give multiple codes to words with multiple

pronunciations based on their pronunciations then this

problem can also be solved.

Philips, in 2000, came with a better phonetic

encoding, which is an extension of Metaphone

encoding with some modifications and also gives

multiple codes to words with multiple pronunciations.

He named his new phonetic encoding Double

Metaphone encoding [16].

3.2.2.2. Phonetic encoding in Bangla. Phonetic

encoding has been tried before in Bangla as a solution

of spelling checker. Haque and Kaykobad [6] and

UzZaman and Khan [7] tried the Soundex approach of

disjointing letters of similar sound in Bangla and give

them same code. As mentioned earlier this solution

solved the problems of phonetically similar characters

in Bangla.

Reviewing the challenges of phonetic errors in

Bangla and phonetic encoding of English we can come

to the conclusion that following the approach of

English encoding we can solve our problems.

Metaphone encoding considers the context of letter in

a word before giving it a phonetic code. Using this

method we can give phonetic code to the word based

on their pronunciation.

Challenge: Consonant clusters or conjuncts with

unusual pronunciation. � = �+◌
 +�; �� [KA

HASANT SSA TA] /k
hɔt̪o/ is pronounced as �� [KHA

TA] /k
hɔt̪o/, where � does not have any sound.

Solution: We found that here � is sounded as �. If
we can give � the code of � then we solve this
problem.

Challenge: Different uses of Phalaa’s. For

example, BA phalaa after a consonant of initial

position does not have any sound. � in the word ����
does not have any sound.

Solution: � in the context of phalaa is coded
differently than in the usual context. We are just

considering the context of � phalla before giving the
code.

Challenge: Different pronunciation of letters or

conjuncts in different contexts. At the beginning of

word, � is pronounced as � /kh/. (�� → �� /khɔt̪o/); in
the middle or at the end of a word, it is pronounced as

�� /kkh/, (� → �� /d ̪okkho/)

Solution: If we consider the context of � before
encoding then this problem is solved too.

From the cases above we understood that we

could easily solve these problems using Metaphone

encoding approach of giving phonetic code

considering the context of letters.

There is still one challenge left, which is multiple

pronunciations of same letters in same context. For

example, � with �: According to Bangla phonological
rules, � should be pronounced as � or � and � should
be pronounced as ����: ���� → ����� /aovan/.

However, most native speakers pronounce these words

the same way as it is written. For example, ���� is
usually pronounced as ����� /ahob

h
an/. Both

pronunciations are considered correct. We can solve

this problem too but we have to use the double

metaphone encoding approach of giving multiple

codes to words with multiple pronunciation.

Using the approaches of English encoding we can

generate a phonetic code for Bangla which represents

the pronunciation of a word. The best part is, even

though Bangla has so many rules, in most cases these

Bengali

 72

grammatical rules are consistent which leads to a very

successful phonetic encoding for Bangla. So we used

the phonetic encoding for Bangla, Double Metaphone

for Bangla proposed by UzZaman and Khan [2] and

described in detail in [18]. This phonetic encoding

handle all the cases described above.

3.2.2.3. Method of generating suggestion for phonetic

error. Phonetic encoding is a method to increase the

performance of spelling checker but it alone cannot

generate suggestions. We need to use the approximate

string-matching algorithm to generate the suggestion

from this phonetic encoded list. When we have the

phonetic encoding then the method of generating

suggestion for phonetic error is simpler than it seems.

At first we will generate the phonetic codes using [2,

18] of all the words in the word list. Then, instead of

looking up the words in the word list, we will use this

phonetically encoded word list instead. This way, all

the phonetic variations are handled inside the phonetic

encoding.

4. Ranking Suggestions

Sorting the suggestions according to the relevance

of the misspelled word is the most important part of a

spelling checker.

4.1. Previous work on ranking suggestions

Levenshtein edit distance algorithm [12] is very

efficient for any language to rank the suggestions and

even in Bangla so far most of the spelling checkers

recommended this method to rank the suggestions.

B.B. Choudhury [4] suggests the edit distance

algorithm for ranking the suggestions. Abdullah and

Rahman in [5] states the necessity of “highly efficient

algorithm” for sorting the suggestions considering the

phonetic similarity but they did not discuss their

method of solving this problem. In another paper by

the same authors Abdullah and Rahman [8] states that

they used edit distance in their case to rank the

suggestions but they reports the necessity of a “highly

efficient algorithm” to consider the phonetic similarity

in this paper too.

4.2. Our proposal for ranking suggestions

In this section we propose for a solution that can

consider the phonetic similarity to rank the

suggestions. At this point we have generated

suggestions for our misspelled words, which includes

words having edit distance maximum 2 between the

misspelling word and words of word list for

typographical error and we term this distance as “Typo

edit distance”. We also have words having edit

distance 2 between the phonetic code of misspelling

word and the phonetic code of words of word list for

phonetic error, we term this distance as “Phonetic edit

distance”. Now we need to rank the suggestions.

In our case we always prioritize phonetic error

than typographical error. To rank we need to consider

both the scores but we give a higher weight to the

phonetic edit distance so that words with lower

phonetic edit distance appear in the higher position in

the suggestion list. In our case we give weight of 60 to

phonetic edit distance and a weight of 40 to

typographical edit distance. Using these we will

generate a score, which is our determinant to rank the

suggestions.

Score = Typo edit distance * Typo

weight + Phonetic edit distance *

Phonetic weight

(3)

Below is the table (Table 1) with all possible

values of Score, considering up to the edit distance of

2 for both typographical and phonetic error. It is

clearly shown that because of higher weight phonetic

edit distance with lower value will always be in the top

of the list.

Table 1: Possible scores of suggestion ranking

Typo

edit dis

Typo

weight

Phonetic

edit dis

Phonetic

weight score

0 40 0 60 0

1 40 0 60 40

2 40 0 60 80

0 40 1 60 60

1 40 1 60 100

2 40 1 60 140

0 40 2 60 120

1 40 2 60 160

2 40 2 60 200

5. Performance

In our spelling checker to handle phonetic error

we used the phonetic encoding proposed in [2]. This

phonetic encoding [2] was used in 1607 commonly

misspelled words found in [19] and showed the

encoding performance. It generated the encoding [2]

of both the correct and misspelled words, and then

Working Papers 2004-2007

 73

compute the edit distance between two phonetic codes.

It showed Error if the edit distance between their

phonetic codes is not zero. Edit distance 0 means

encoding of the two words were same.

Table 2: Encoding performance of [2]

No of words 1607

Edit Distance 0 1473

Error 134

Rate of accuracy 91.67%

Rate of error 8.33%

From the table above (Table 2) we can see that we

do not need to consider the typographical errors in

91.67% to get the suggestion. Phonetic encoding is

giving the right suggestion for us. And to handle rest

of the cases we included up to the edit distance of 2.

Now we have to check if these errors fall in this region

or not. We have another table in [2] that describes the

error distribution of these 8.33% words, which is

shown in Table 3.

Table 3: Error distribution

Error 134

Edit Distance 1 107

Edit Distance 2 27

It shows that that words that does not have the same

phonetic code with the misspelling word has an edit

distance of either 1 or 2 between their phonetic codes.

So, after handling the edit distance of 2 we are now

including all the possible words in our suggestion list

and we are not missing any word. And our ranking

scheme ensures to rank according to phonetic

relevance because of giving a higher weight to the

phonetic edit distance. So we are able to generate the

right suggestion and also able to rank them according

to phonetic relevance.

6. Evaluation

Kukich [10] lists certain parameters that should be

considered during the evaluation of spelling checkers

for isolated-word error correction. These are:

• lexicon size,

• test set size,

• correction accuracy for single error

misspellings,

• correction accuracy for multi-error

misspellings, and

• type of errors handled (phonetic,

typographical, OCR generated etc.);

Another paper on Bangla spelling checker [9] also

considers these parameters for evaluation of Bangla

spelling checkers. We are also considering these

parameters to evaluate our spelling checker.

Lexicon size: We need to have an extensive lexicon.

Using the morphological parser can reduce this lexicon

size, which should be considered in future spelling

checker for Bangla.

Test set size: We tested our spelling checker on 1607

words that list the most common misspelling words of

Bangla [19].

Correction accuracy for single error misspellings:

Phonetic encoding is our part of spelling checker. So

the combination of phonetic encoding and single error

misspelling can correct 98% of errors for this sample.

Correction accuracy for multi-error misspellings:

We used edit-distance for typographical error. We can

handle multi-error misspelling if we want to but it

become expensive in terms of time. So, we handled up

to 2-error misspellings, which lead us to 100%

accuracy for this sample. B.B. Chaudhuri [4] notices

that more than 70% errors of 15,162,317 words are

single and 2-error misspelling. Hence we can be

assured that in very large corpus 2-error misspelling

will work well.

Type of errors handled (phonetic, typographical,

OCR generated etc.): We consider only phonetic and

typographical error. In case of OCR generated error,

substitution error between similar looking characters

(e.g. ‘e’ and ‘c’ or ‘m’ and ‘nn’) will be more common

than those between similar sounding characters (e.g.

‘c’ and ‘k’ or ‘f’ and ‘ph’). We have not considered

OCR generated errors in our paper.

7. Conclusion

In this paper, we have proposed a comprehensive

spelling checker application for Bangla. We discussed

the steps of checking the spelling of a word, namely

detecting misspelled words, generating suggestions for

misspelled words, and ranking the suggestions so that

the most likely candidate is placed first. We then

discussed the existing solutions and explored their

limitations, and proposed a complete spell checking

methodology for Bangla. Finally we presented the

performance and evaluation of our proposed solution.

Bengali

 74

8. Acknowledgement

This work has been supported in part by the PAN

Localization Project (www.panl10n.net), grant from

the International Development Research Center,

Ottawa, Canada, administrated through Center for

Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,

Pakistan. We would also like to thank Arnab Zaheen,

Naira Khan and other members of our research group.

9. References

[1] Wikipedia page of Bengali language
http://en.wikipedia.org/wiki/Bengali.

[2] N. UzZaman and M. Khan, “A Double Metaphone

Encoding for Bangla and its Application in Spelling

Checker”, Proc. 2005 IEEE 2atural Language

Processing and Knowledge Engineering, Wuhan,

China, October, 2005.

[3] P. Kundu and B.B. Chaudhuri, “Error Pattern in

Bangla Text", International Journal of Dravidian

Linguistics, 28(2), 1999.

[4] B.B. Chaudhuri, “Reversed word dictionary and

phonetically similar word grouping based spell-

checker to Bangla text”, Proc. LESAL Workshop,

Mumbai, 2001.

[5] A.B.A. Abdullah and A. Rahman, “A Different

Approach in Spell Checking for South Asian

Languages”, Proc. 2nd International Conference on

Information Technology for Applications (ICITA),

China, 2004.

[6] M.T. Haque and M. Kaykobad, “Use of Phonetic

Similarity for Bangla Spell Checker”, Proc. 5th

International, Conference on Computer and

Information Technology, Dhaka, December, 2002, pp.

182-185.

[7] N. UzZaman and M. Khan, “A Bangla Phonetic

Encoding for Better Spelling Suggestion”, Proc. 7th

International Conference on Computer and

Information Technology, Dhaka, Bangladesh,

December, 2004.

[8] A.B.A. Abdullah and A. Rahman, “Spell Checker

for Bangla Language: An Implementation

Perspective”, Proc. 6th International Conference on

Computer and Information Technology, Dhaka,

Bangladesh, 2003.

[9] A. Bhatt, M. Choudhury, S. Sarkar and A. Basu,

“Exploring the Limits of Spellcheckers: A comparative

Study in Bengali and English”, Proc. The Second

Symposium on Indian Morphology, Phonology and

Language Engineering (SIMPLE'05). Published by

CIIL Mysore, Kharagpur, INDIA, February 2005, pp.

60-65.

[10] K. Kukich, “Techniques for automatically

correcting words in text”, ACM Computing Surveys,

24 (4), pp. 377-439.

[12] F.J. Damerau, “A technique for computer

detection and correction of spelling errors”,

Communication of ACM, 7(3), 1964, pp. 171-176.

[13] Levenshtein edit distance algorithm, available

online at

http://www.nist.gov/dads/HTML/Levenshtein.html.

[14] Definition of phonetic encoding available online

at

http://www.nist.gov/dads/HTML/phoneticEncoding.ht

ml.

[15] The Soundex Algorithm, available online at

http://www.archives.gov/research_room/genealogy/cen

sus/soundex.html.

[16] L. Phillips, “Hanging on the Metaphone”,

Computer Language, 7(12), 1990.

[17] Lawrence Philip’s Metaphone Algorithm,

available online at

http://aspell.sourceforge.net/metaphone/index.html.

[18] L. Phillips, “The Double Metaphone Search

Algorithm”, C/C++ Users Journal, 18(6), June 2000,

available online at

http://www.cuj.com/documents/s=8038/cuj0006philips

/.

[19] N. UzZaman, “Phonetic Encoding for Bangla and

its Application to Spelling checker, Name searching,

Transliteration and Cross language information

retrieval”, Undergraduate thesis (Computer Science),

BRAC University, May 2005.

Working Papers 2004-2007

 75

[20] K. Alam, Bangla Banan Obhidhan, Mirnava,

Dhaka, Bangladesh.

