
A Bangla Phonetic Encoding for Better Spelling Suggestions

Naushad UzZaman and Mumit Khan

BRAC University, Dhaka, Bangladesh

naushad@bracuniversity.ac.bd, mumit@bracuniversity.ac.bd

Abstract

We present a phonetic encoding for Bangla that

can be used by spelling checkers to provide better

suggestions for misspelled words. The encoding is

based on the Soundex algorithm, modified to match

Bangla phonetics. We start by analyzing Soundex

encoding scheme when applied to Bangla. &ext we

propose a new encoding that handles the case of

Bangla words, including those containing conjuncts.

We conclude with a demonstration of a prototype

spelling checker that uses this phonetic encoding to

offer suggestions for a set of misspelled Bangla words.

1. Introduction

One of the more difficult tasks for a spelling

checker is to produce “good” suggestions for

misspelled words. While there have been significant

research efforts in approximate string matching

algorithms for English and other Western languages

[1-4], similar work for Bangla has however just begun

[5, 6]. An analysis of Bangla misspelled words shows

that two of most common reasons for misspellings are

(i) phonetic similarity of Bangla characters, and (ii) the

difference between the grapheme representation and

phonetic utterances [7]. This observation is the

primary motivation for creating a phonetic encoding

for Bangla that can be used to provide suggestions for

misspelled words. While this paper focuses on the

spelling checking application, the proposed encoding

is equally applicable in a wide range of text-processing

applications, from searching for patient records in a

medical database to matching names in census records.

The basic idea behind spelling suggestions using

phonetic encoding is quite simple:

1. Encode the input word using phonetic coding rules;

2. Look up a phonetically encoded lexicon for words

with the same code; and

3. Create an ordered list, i.e., suggestions, from the

result using some heuristic.

In this paper, we introduce a phonetic encoding

for Bangla, and then demonstrate how a spelling

checker would use it to produce suggestions for

misspelled Bangla words. We assume that the Bangla

text is encoded using Unicode Normalization Form C

(NFC) [9], with its consistent logical ordering of the

consonants and the dependent vowels, as well as of the

large repertoire of the juktakkhors (compound letters

or conjuncts) in Bangla.

2. Phonetic Matching Techniques

A major class of approximate string matching

algorithms are the various phonetic methods, from the

eighty-year old Soundex [9, 10], to the more recent

Metaphone [11, 12] and PHONIX [13]. The input to

these phonetic encodings or “sound-alike” algorithms

is a word, and the result is an encoded key, which

should be the same for all words that are pronounced

similarly, allowing for a reasonable amount of

fuzziness. The basic principle behind these phonetic

matching schemes is to partition the consonants by

phonetic similarity, and then use a single key to

encode each of these sets. Strings that sound similar

compare equal in their respective encoded form. For

these particular algorithms, only the first few

consonant sounds are encoded, unless the first letter is

a vowel. Metaphone for example encodes "Stephan",

“Steven”, and “Stefan” as STFN, so all three names

compare equal when encoded.

Of these phonetic methods, Soundex method is by

far the oldest, first patented by Odell and Russel in

1918. Soundex partitions the set of letters into seven

disjoint sets, assuming that the letters in the same set

have similar sound. Each of these sets is given an

unique key, except for the set containing the vowels

and the letters h, w, and y, which is considered to be

silent and is not considered during encoding. The

Soundex codes are shown in Table 1. The Soundex

algorithm itself, shown in Figure 1, transforms all but

the first letter of each string into the code, then

truncates the result to be at most four characters long.

Zeros are added at the end if necessary to produce a

four-character code. For example, Washington is

coded W-252 (W, 2 for the S, 5 for the N, 2 for the G,

remaining letters disregarded), and Lee is coded L-000

(L, 000 added). A limitation of Soundex is that it does

not know the intricacies of complex spelling rules for

English, and because it works on a letter-by-letter

Working Papers 2004-2007

 77

basis, it often does not produce the expected result.

Another limitation is that truncating the words to four-

character code ignores differences in long strings,

which may not be appropriate when finding

alternatives for misspelled words. An advantage of

Soundex is the small table size and simplicity of the

letter-by-letter algorithm, which can provide

significant speedup over the other phonetic methods.

Table 1: Soundex coding rules

Code Letters

0 (not coded) A, E, I, O, U, H, W, Y

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

1. Replace all but the first letter of s by its phonetic

code.

2. Eliminate any consecutive repetition of codes.

3. Eliminate all occurrences of code 0 (i.e., eliminate

vowels, and the letters H, W and Y).

4. Return the first four characters of the resulting

string.

Figure 1: The Soundex algorithm

PHONIX is similar to Soundex in that letters are

mapped to a set of codes. Prior to this mapping

however, PHONIX applies preliminary

transformations to letter groups in order to reduce

strings to a canonical form. For example, gn, ghn, and

gne are mapped to n, the sequence tjV (where V is any

vowel) is mapped to chV if it occurs at the start of a

string, and x is transformed to ecs. PHONIX applies

altogether about 160 of these transformations. These

transformations provide a certain degree of context for

the phonetic coding and allow, for example, c and s to

be distinguished, which is not possible under Soundex.

The Phonix codes are shown in Table 2.

Table 2: PHO%IX coding rules

Code Letters

0 (not coded) A, E, H, I, O, U, W, Y

1 B, P

2 C, G, J, K, Q

3 D T

4 L

5 M, N

6 R

7 F, V

8 S, X

The Metaphone algorithm is also a system for

transforming words into codes based on phonetic

properties. However, unlike Soundex, which operates

on a letter-by-letter scheme, Metaphone analyzes both

single consonants and groups of letters called

diphthongs, according to a set of rules for grouping

consonants, and then mapping groups to Metaphone

codes.

A drawback of these algorithm as pointed out

earlier is that these are language-specific, and typically

designed for the English language. There have been

attempts to modify these algorithms for other

European languages, such as Spanish, Polish and

Portugese, but not for Bangla to the best of our

knowledge. Using recent research on machine learning

methods for letter-to-phoneme conversion [14, 15],

application of these techniques to Bangla should be

straightforward, provided that there is sufficient

training data. As the first step in defining a

comprehensive phonetic matching technique for

Bangla, we describe an algorithm based on the widely-

used Soundex algorithm, suitably modified to reflect

Bangla phonetics.

3. Bangla Phonetically Similar Error

Correction

Bangla letters are partitioned according to

phonetic similarity (e.g., I:II, U:UU, NA:NNA,

SA:SSA:SHA, etc), with each set represented by a

single code. This coding can then be applied to Bangla

dictionary to convert it to a non-homophonous one,

with each entry pointing to the set of words that

correspond to this code [5]. When checking the

spelling of a word, we first search for its encoded

version in the modified dictionary. If the entry exists,

Bengali

 78

then either the original exists in the list of words

corresponding to this code (in which case, the spelling

is correct), or the word is misspelled and the list is

offered as the set of alternatives for the original word.

If the entry does not exist, then the alternatives must be

suggested using one of the edit-distance algorithms

(e.g., Levenshtein [15]). However, this technique does

not work if an extra error occurs in the spelling, so this

technique must be used with a edit-distance algorithm

to be effective in a spelling checker. See [2] for a

summary of the various commonly-used edit-distance

algorithms. This technique works for Bangla conjuncts

as well, but only if we eliminate the hasant character

from our en-coded strings.

3.1. Soundex algorithm for Bangla

The Soundex algorithm, unmodified, presents a

set of difficulties when used in a Bangla spelling

checker. In this section, we present some of the

prominent issues.

Case 1: Soundex does not consider the first letter in

the string.

Problem: This is in fact a general problem with

Soundex. If there is a spelling error in the first

character of the word, the correct suggestion cannot be

produced using Soundex. For example, if we write ���

instead of ���, Soundex will not be able to suggest the

correct alternative, as the incorrectly spelled word ���

will begin with � independent of the character

encoding used, Unicode or otherwise at the beginning.

Since the phonetically encoded lexicon will have the

word ��� encoded as something that begins with �, the

phonetic method will never produce ��� as a

suggestion for ���. Of course, other edit-distance

algorithms (e.g., Levenshtein [15]) are able to produce

the correct suggestion in this particular case, so a

spelling checker employing other similarity measures

will produce the expected result (See [2] for a

summary of the various edit-distance algorithms).

Case 2: Soundex excludes vowels when encoding

strings.

Problem: The � vowel is often used as a prefix to

negate the meaning of Bangla words, and excluding it

will often produce suggestions that are of the opposite

meaning than the intended one. This may be

appropriate behavior for some applications, but not for

a spelling checker. For example, the words ��	 and ���	

will result in the same Soundex code, even though we

do not expect one as the suggested alternative for the

other, much like we would not expect unwell as the

suggested alternative for well .

Problem: Another problem of excluding the vowels is

that words that are not phonetically similar and have a

very different meanings also produce the same code.

� and
��, ���� and ���.
� (forest) and
�� for

example will produce the same code if we exclude

vowels, where these words do not have same meaning,

and in addition, these are phonetically quite different.

Similarly, in the case of ���� and ��� , the � from

���� and the ◌ from ��� will be excluded to produce

the same code, another undesired result.

Case 3: In soundex, consecutive repetitions of the

same coded characters are eliminated.

Problem: Unicode specifies that the consonants that

make up Bangla juktakkhors are separated by hasant

chraracter, which is not coded in our algorithm (i.e.,

eliminated during the phonetic encoding process). The

side-effect of this decision to eliminate hasant is that,

at least for a set of juktakkhors, consecutive repetitions

of the same consonants will have the same code as the

single instance of that con-sonant. Using our

algorithm, � (�) for example will have the same code

as �, since we exclude the hasant embedded in the

Unicode representation of the conjunct. This particular

problem is not a general Soundex problem, but rather a

consequence of the way our algorithm handles Bangla

conjuncts.

3.2. Phonetic matching technique for Bangla

Table 3 shows the proposed Bangla phonetic

codes using rules found in [17, 18], and Figure 2

shows the modified Soundex algorithm suitable for a

Bangla spelling checker.

Table 3: Bangla phonetic coding rules

Code Character Unicode

0 (not

coded)

◌� (hasant) 09CD

� 0985

� 0986

� 09DF

a

◌� 09BE

� 0987

	 0988

◌ 09BF

i

◌� 09C0

Working Papers 2004-2007

 79

Code Character Unicode

� 0989

 098A

 ◌� 09C1

u

◌� 09C2

� 098F

� 0990

�◌ 09C7

y

�◌ 09C8

� 0993

� 0994

�◌� 09CB

o

�◌� 09CC

� 0995 k

� 0996

� 0997 g

� 0998

� 099A c

� 099B

� 099C

� 099D

j

� 09AF

 099F t

! 09A0

" 09A1 d

09A2

$ 09A8 n

% 09A3

& 09A4 f

' 09A5

(09A6 q

) 09A7

* 09AA p

+ 09AB

Code Character Unicode

, 09AC b

- 09AD

. 09AE

/ 0999

m

◌0 0982

1 09B0

2 09DC

3 09DD

r

4 098B

5 09B8

6 09B7

s

7 09B6

8 09B9 h

◌9 0983

l : 09B2

1. Replace all of s by its phonetic code.

2. Eliminate all occurrences of code 0 (i.e., eliminate

hasant).

3. Return the resulting string.

Figure 2: The Soundex algorithm for Bangla

3.3. Example of error correction using

phonetic matching

Table 4 shows a set of misspelled words, their

corresponding encoded versions, and the suggested

alternatives.

Table 4: Suggestions for misspelled words

Input Encoded Suggestion

	���� kumar ����

����� pasan �����

��� qgq (; (���)

The case of �� deserves special mention. The

Unicode representation of the juktakkhor � consists of

the letters � and �, separated by a hasant. Since the

pronunciation of this sequence of letters is the same

Bengali

 80

with or without the hasant, it can be safely excluded

from the encoding. One the other hand, if we include

hasant in the encoding, there will be an one-character

error, and the encoded versions will not match, and the

correct suggestion can not be produced. A

consequence of this handling of the conjuncts is that

the large number of Bangla conjuncts does not affect

the table, an important consideration when dealing

with large dictionaries.

4. Conclusion

We present a preliminary effort at creating a

phonetic matching algorithm for Bangla based on

Soundex, and tailored for a spelling checker. We

describe a prototypical phonetic coding rules and the

associated algorithm that produces “good” suggestions

for misspelled Bangla words. There are however many

complex spelling rules that are not yet addressed in

this encoding, such as those involving the use of Reph

and Yaphalaa [17, 18], due to the lack of con-text

information in our algorithm. The approaches used by

PHONIX and Metaphone variants do provide some

context, and our future work in this area will

concentrate on creating transformation maps to reduce

strings to canonical forms before the table-driven

encoding step.

5. References

[1] K. Kukich, “Techniques for automatically

correcting words in text”, Computing Surveys, 24, (4),

1992, pp. 377–440.

[2] J. Zobel and P. Dart, “Finding Approximate

Matches in Large Lexicons”, Software - Practice and

Experience, 25(3), March, 1995, pp. 331-345.

[3] F. Damerau, “A technique for computer detection

and correction of spelling errors”, Communication of

the ACM, 7(3), 1964, pp. 171-176.

[4] V. Hodge and J. Austin, “A Novel Binary Spell

Checker”, Proc. International Conference on Artificial

&eural &etworks, Vienna, August, 2001.

[5] B. B. Chaudhuri, “Reversed word dictionary and

phonetically similar word grouping based spell-

checker to Bangla text”, Proc. LESAL Workshop,

Mumbai, 2001.

[6] A.B.A Abdullah and A. Rahman, “A Different

Approach in Spell Checking for South Asian

Languages”, Proc. 2nd International Conference on

Information Technology for Applications (ICITA),

China, 2004.

[7] P. Kundu and B.B. Chaudhuri, “Error Pattern in

Bangla Text”, International Journal of Dravidian

Linguistics, 28(2), 1999.

[8] The Unicode Consortium, The Unicode Standard,

Version 4.0, Addison-Wesley, 2003. Also available

online at

http://www.unicode.org/versions/Unicode4.0.1.

[9] D. E. Knuth, The Art of Computer Programming,

Vol. 3, Addison-Wesley Publishing Company,

Reading, Massachusetts, 2nd edition, 1982.

[10] The Soundex Algorithm, available online at

http://www.archives.gov/research_room/genealogy/cen

sus/soundex.html.

[11] L. Phillips, “Hanging on the Metaphone”,

Computer Language, 7(12), 1990.

[12] L. Phillips, “The Double Metaphone Search

Algorithm”, C/C++ Users Journal, 18(6), June, 2000.

Also available online at

http://www.cuj.com/documents/s=8038/cuj0006philips

/.

[13] T. N. Gadd, “PHONIX: The Algorithm”,

Program, 24(4), pp. 363-366, 1990.

[14] W. M. Fisher, “A statistical text-to-phone

function using n-grams and rules”, Proc. ICASSP-99,

the 1999 IEEE International Conference on Acoustics,

Speech and Signal Processing, volume 2, March 1999,

pp 649-652.

[15] K. Toutanova and R. C. Moore, “Pronunciation

modeling for improved spelling correction”, July

2002.

[16] V. L. Levenshtein, “Binary codes capable of

correcting deletions, insertions, and reversals”, Soviet

Physics Doklady, 10, 1966.

[17] Bangla Uccharon Obidhan, Bangla Academy,

Dhaka, Bangladesh.

[18] Bangla Banan Obidhan, Bangla Academy, Dhaka

Bangladesh.

