
Developing a Computational Grammar for Bengali Using the HPSG 

Formalism 
 

Naira Khan and Mumit Khan 

Center for Research on Bangla Language Processing, BRAC University, Dhaka, Bangladesh 

naira@bracu.ac.bd, mumit@bracu.ac.bd 

 

 

Abstract 
 

This paper describes the first phase of developing 

a computational grammar for Bengali using the Head-

Driven Phrase Structure Grammar (HPSG) formalism. 

The HPSG formalism is a highly developed framework 

that combines computational and psycholinguistic re-

search to provide a tool with which the features 

particular to a language can be captured and 

simultaneously provide information about language 

universals i.e. linguistic phenomena common to 

diverse languages. The grammar is implemented on a 

Linguistic Knowledge Building (LKB) system that has 

both a syntactic and a semantic level. The system is a 

powerful tool that allows the user to build a parser 

along with a generator by using the formalism to code 

in linguistic rules through feature structures and 

feature unification. This paper provides a set of 

instructions for using the formulation of HPSG to 

parse as well as generate grammatical sentences of 

Bengali. This paper will enable linguists to interpret 

and formulate features and types with which Bengali 

or a structurally similar language can be coded in 

HPSG. It provides a stepping-stone towards the 

development of a full computational grammar for 

Bengali which will also provide useful information as 

a computational description for its sister languages. 

 

1. Introduction 
 

A computational grammar is a grammatical 

description of a natural language in a computational 

framework – one that is inherently important in various 

applications of Natural Language Processing (NLP) 

such as machine translation, question-answering 

systems etc. These involve parsing human sentences 

that pose considerable problems due to the ambiguous 

nature of natural languages. Therefore, developing a 

computational grammar for a natural language can be a 

complicated endeavor. Grammar development, also 

known as grammar engineering, is a formidable task 

and requires a formalism that mirrors a very high-level 

programming language and skills in developing an 

implementable account of linguistic phenomena. [1] In 

this paper we attempt to mark the beginnings of such 

an endeavor for Bengali, using the HPSG formalism 

and an implementation platform known as LKB. The 

LKB system is also unique in that it is linguistically 

motivated, has semantic representation in the form of 

Minimal Recursive Semantics (MRS), and most 

importantly, is bi-directional – equipped with both a 

parser and a generator. [2] 

 

1.1. The Head-driven Phrase Structure 

Grammar (HPSG) formalism 
 

The Head-driven Phrase Structure Grammar 

(HPSG) is a non-derivational generative grammar 

theory developed by [3, 4]. The name ‘Head-driven 

Phrase Structure Grammar’ was chosen to reflect the 

increasingly recognized importance of information 

encoded in the lexical heads of syntactic phrases. In 

other words, the formalism is based on lexicalism. The 

lexicon is not simple a list of entries, it is richly 

structured in that individual entries are marked with 

types forming a hierarchy in themselves. The uniform 

and modular organization of HPSG makes it attractive 

for natural language processing. [5] 

 

1.2. Implementation: LKB and the LinGO 

Grammar Matrix 
 

The Linguistic Grammars Online (LinGO) 

initiative at Stanford University is an ongoing 

collaboration that makes available a number of open-

source, HPSG related computational resources and 

includes partners in the US, Europe and Asia. These 

resources, freely available online, include grammars, 

lexicons, and the Linguistic Knowledge Based (LKB) 

Grammar Engineering Platform. [5] 

The LKB system is a grammar and lexicon 

development environment for typed feature structure 

grammars, used most extensively for HPSG. The LKB 

source is freely available and implemented in Common 

Lisp. Typed Feature Structure (TFS) languages are 

essentially based on one data structure – the typed 



Bengali 

 102 

feature structure – and one operation –unification – on 

the typed feature structure. The constraints on the type 

system provide a way of capturing linguistic 

generalizations. This powerful combination allows the 

creation of grammars and lexica used to parse and 

generate a wide range of natural languages. [1] 

LinGo project’s English Resource Grammar 

(ERG) is the largest published grammar developed to 

date on the LKB to date. [1] The LKB system was also 

used to develop grammars for other languages such as 

Japanese and Spanish. This cross-language grammar 

writing experience resulted in the LinGO Grammar 

Matrix, available online at the following URL: 

http://lingo.stanford.edu/. 

 

1.3. Previous work 
 

To our knowledge the development of a grammar 

of Bengali in a computational framework is still 

unexplored territory. Although the HPSG formalism 

itself is not new to Bengali as we find that HPSG and 

LKB have been used extensively for the 

implementation of compound verbs of Bengali. [6] 

Other formalisms such as LFG [7, 8] and CSG [9, 10, 

11] have also been used for the parsing of some 

Bengali sentences. Apart from these, parsing in 

Bengali has primarily been statistical or based on 

shallow parsing with little or no semantic 

representation. [12, 13, 14] In fact grammar 

engineering is still in its infancy in terms of South 

Asian languages. 

 

2. Developing a Computational Grammar 

for Bengali 
 

In the following sections we describe the various 

linguistic phenomena relevant to a computational 

description of Bengali and the method in which they 

were implemented. 

 

2.1. Methodology 
 

2.1.1. The Starter Grammar. Instead of writing up a 

grammar from scratch, the Lingo Grammar Matrix 

(available at: http://www.delph-in.net/matrix/) allows 

you to automatically generate a ‘starter grammar’ 

consisting of the bare minimum lexical entries and 

rudimentary rule types by configuring certain cross-

linguistically common typological properties in 

accordance with the grammar of the target language. 

The starter grammar consists of lexical entries 

comprising two nouns, two verbs, rules for basic word 

order, types and constraints for determiners, basic 

sentential negation, yes-no question strategies and co-

ordination strategies. 

 

2.1.2. The Bengali Grammar. The Bengali HPSG 

grammar written and implemented in the LKB system 

by building on the Matrix starter grammar comprises 

of the following linguistic phenomena: 

 

Basic Word Order and Phrase Structure Rules: 

Although Bengali is a non-configurational language 

we must be careful to note that word-order is not 

completely free in that all possible arrangements of 

words within a sentence is not grammatical. Although 

it can be said that Bengali has a pragmatically free 

word order, nevertheless word ordering is 

predominantly Subject-Object-Verb (SOV). 

E.g.:  ami       bhat     kha-i 

       I.1.sg      rice    eat.1.pres-hab 

         S          O          V 

Hence phrase structure rules in Bengali have been 

coded accordingly treating it as Head-Final Specifier-

Initial with the following rule instances and type 

definitions from the Matrix. 

 

Agreement and Relations:  Bengali is a fusional 

language and has agreement primarily in terms of 

Subject-Verb agreement where the verb is marked for 

person, grade, tense, aspect and modal information. 

Apart from this, certain adjectives have gender 

agreement with nouns and number agreement is 

relevant for certain determiners and nouns.  

These agreement issues are dealt with the 

following type definition built on instances of the 

Matrix: 
png :+ [PER person, NUM number, GRD 
grade, TPC topical, GEN gender ]. 

For person agreement we have the subtype PER 

with values ‘first’, ‘non-first’, ‘second’ and ‘third’. 

The value ‘non-first’ is introduced as the honorific 

forms of the second person and third person have 

identical verbforms. The second and third person can 

be further subdivided into three grades. These are 

introduced through the subtype GRD and the values 

‘hon’ for honorific, ‘non-hon’ for non-honorific and 

‘pej’ for pejorative. An alternative way of coding 

grade would be to split the values of the second and 

third person within the subtype of PER rather than 

introducing a new subtype. 

A new subtype TPC is introduced as Bengali 

nouns take different plural markers based on topicality 

levels. It has the values of ‘high’ and ‘non-high’ which 

usually correspond to topicality issues of animacy, 

human, non-human, etc.  



Working Papers 2004-2007 

 103 

Although gender agreement is not prolific as 

Bengali only has lexical gender, certain adjectives and 

nouns have gender agreement only in the feminine 

form and hence the subtype GEN has values ‘fem’ and 

‘non-fem’. As all nouns whether masculine or feminine 

can be modified by the masculine adjective the ‘masc’ 

value is kept undefined. 

Bengali verbs do not have number agreement. 

However, the subtype NUM serves the purpose of 

defining pluralizers and definiteness markers between 

count and mass nouns. It has the values ‘sg’, ‘non-sg’ 

and ‘pl’. 

 

Case Relations: Bengali has 6 morphosyntactic cases 

where 5 of them are analytic and one periphrastic. 

Amongst the analytic case markers, accusative and 

dative have identical markers and hence the two 

comprise a single value ‘acc-dat’. The instrumental 

and locative cases are a similar issue. This is a very 

simplified view of case-marking in Bengali because 

there are several issues of morphosyntactic ambiguity 

which are not dealt with in the first phase of this 

grammar. 

The feature CASE is defined for the type noun 

and adpositions. 
noun :+ [CASE case]. And np :+ [CASE 
case]. 
case := *top*. 
nom := case. 
acc-dat := case. 
gen := case. 
instr-loc := case. 
abl := case. 

Adpositions are constrained through the head-

complement rules to exclude adpositions as head 

daughters in order to make them post-positions rather 

than prepositions. 

The case information is added to the valence 

features of the transitive verb types. Noun and pronoun 

types are also modified to reflect case values. 

 

Types and Lexical Entries: Lexical Entries consist of 

the following major word classes and their respective 

types written into the lexicon.tdl and bangla.tdl files 

respectively, in the starter grammar: 

 

4ouns: The nouns consist of, at the very first level, a 

basic noun form that has determiner optionality in that 

a Noun Phrase (NP) can consist of a noun with or 

without a determiner. The basic noun-lex is then 

classified into various types of common noun and 

proper noun that inherit from the basic noun form but 

have constraints particular to each type. Common 

nouns are constrained to be in the 3
rd

 person and are 

subdivided into: Common nouns that don’t take 

determiners, count nouns and mass nouns. Count 

nouns are further constrained as singular in number 

(NUM sg) and according to topicality as nouns in 

Bengali have different plural markers based on 

differences in levels of topicality. Mass nouns are 

constrained for number information (NUM non-sg) in 

order to prevent it from taking any plural markers. 

Proper nouns are constrained to be in the 3
rd

 person 

and don’t take determiners. 

An example of a type: 
common-noun-lex := noun-lex &  
 [ SYNSEM.LOCAL [ CAT.VAL.SPR  
   < [ LOCAL.CONT.RELS  
     < ! [PRED reg_quant_rel] ! > ] 
>, 
   CONT.HOOK.INDEX.PNG [PER 
third]]]. 

A typical nominal lexeme for ‘cat’: 
biral := count-n-lex & 
 [ STEM < "biral" >,          
   SYNSEM.LKEYS.KEYREL.PRED 
"_biral_n_rel" ]. 
 

Pronouns: Pronouns are types that inherit from the 

basic noun-lex but are constrained to be determiner-

less and do not inflect. 

Pronouns are constrained for number, person and 

case information in agreement with its respective verb 

form due to pronominal marking on the verb. The 

constraints have been split in that the number and 

person information is coded in the type file while the 

case information comes from the lexical entry. 

Type definitions: 
1sg-pronoun-lex := pronoun-lex & 
  [SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG  
    [ PER first, NUM sg ] ]. 
1sg-nom_pron-lex := 1sg-pronoun-lex. 
 

Lexical entry for the first person singular pronoun: 
ami := 1sg-nom_pron-lex & 
  [ STEM < "ami" >, 
  SYNSEM.LOCAL.CAT.HEAD.CASE  nom ]. 
 

Determiners: The basic determiner type is constrained 

to have SPR value that is compatible with nouns that 

take determiners. The determiners are treated as 

quantifying or demonstrative pronouns and are 

subdivided into demonstratives and non-

demonstratives. The non-demonstratives are then 

further divided into proximal and distal 

demonstratives. Further distinctions can be made by 

building on this principle. 

Examples of type definitions: 



Bengali 

 104 

demonstrative_q_rel := reg_quant_rel. 
proximal+dem_q_rel:= 
demonstrative_q_rel.  

The lexical entry inherits from ‘determiner-lex’ 

with the type definition defining the predicate relation: 
ei := determiner-lex & 
 [ STEM < "ei" >, 
   SYNSEM.LKEYS.KEYREL.PRED 
     "_ei_proximal+dem_q_rel" ]. 

 

Verbs: The starter grammar provides a basic verb type 

and two subtypes as transitive and intransitive forms 

that inherit from the basic verb.  

For Bengali we created a new transitive verb 

(trans-verb-lex) which inherits from the transitive verb 

as well as the basic verb and which was constrained 

for case agreement with the nouns that act as the 

arguments as word ordering can mark case relations 

when no overt marker is present. The case information 

was coded in accordance to a definite order to prevent 

ambiguities. Argument order must follow head-final 

ordering. 
trans-verb-lex := verb-lex & 
 transitive-lex-item &  
 [SYNSEM.LOCAL.CAT [ VAL [ SUBJ < 
#subj >, 
                         COMPS < 
#comps >]], 
  ARG-ST <  #subj &  
    [ LOCAL.CAT [ VAL [ SPR < >,   
                     COMPS < > ], 
                    HEAD noun & 
[CASE nom]]], 
              #comps & 
    [ LOCAL.CAT [ VAL [ SPR < >, 
                       COMPS < > ], 
           HEAD noun & [CASE acc-
dat]]] > ]. 

A basic ditransitive verb was created by building 

on the principle of the transitive verb which inherits 

from the transitive verb and basic verb and is 

constrained for case information. 
ditrans-verb-lex := verb-lex &  
 ditransitive-lex-item & 
 [SYNSEM.LOCAL.CAT [VAL [ SUBJ < 
#subj >, 
                 COMPS < #comp1, 
#comp2 > ]], 
  ARG-ST < #subj &  
   [ LOCAL.CAT [ VAL [ SPR < >, 
                     COMPS < > ], 
           HEAD noun & [CASE nom]]], 
    #comp1 & 
   [ LOCAL.CAT [ VAL [ SPR < >, 
                    COMPS < > ], 
     HEAD noun & [CASE acc-dat]]], 
         #comp2 & 
          [ LOCAL.CAT [ VAL [ SPR < 

>, 
                          COMPS < > 
], 
            HEAD noun & [CASE acc-
dat]]] > ]. 

Building on this instance it is possible to create 

different types of transitive and ditransitive verbs that 

differ in terms of case information of its arguments. In 

such cases it is more economical to create a generic 

type devoid of case constraints and to create specific 

supertypes that inherit form it. 

 

Lexical entry for verbs: 

As Bengali verbs minimally consist of a root and 

its inflection where the inflection carries agreement 

constraints, the lexical entries can be made different 

depending on the way the inflectional rules are coded. 

Hence the lexicon may consist of full verb forms for 

each person variation or the root forms only. 

Full verb form: 
khan := trans-verb-lex & 
  [ STEM < "khan" >, 
  SYNSEM [LOCAL.CAT.VAL.SUBJ 
   < [LOCAL.CONT.HOOK.INDEX.PNG  
       [PER non-first, GRD hon ] ] >,  
     LKEYS.KEYREL.PRED "_khan_v_rel" ] 
]. 

Only the root form: 
kha := transitive-verb-lex & 
  [ STEM < "kha" >, 
  SYNSEM.LKEYS.KEYREL.PRED  "_kha_v_rel" 
]. 
 

This is discussed in more detail in the ‘Verbal 

Inflection’ section. 

 

Adjectives: In order to code in adjectives, it is 

necessary to have head-modifier rules. In Bengali 

adjectives are of two types: attributive and predicative. 

Attributive adjectives are pre-head modifiers while 

predicative adjectives have a different syntactic 

structure with an invisible copula that manifests when 

the tense changes. In the first phase of this grammar, 

we have not dealt with the predicative adjective and its 

respective PS rules.  

The type definition for a simple attributive 

adjective for Bengali is: 
 
adjective-lex := basic-adjective-lex 
&  
  intersective-mod-lex & 
  [SYNSEM  
   [ LOCAL.CAT  
    [ HEAD.MOD  
      < [LOCAL.CAT  
         [ HEAD noun, VAL [SPR < > 



Working Papers 2004-2007 

 105 

]]]>, 
     VAL [ SPR < >, 
     SUBJ < >, 
     COMPS < >, 
     SPEC < > ], 
                   POSTHEAD - ]]]. 
 

In Bengali, adjectives don’t have person, number 

or case agreement. However, some adjectives do have 

gender marking in that the feminine counterpart may 

be overtly marked and only appropriate for lexically 

feminine nouns. This can be very easily coded by 

adding an extra subtype for gender (GEN fem) and 

adding constraints to the MOD value of an adjectival 

subtype and corresponding constraints to particular 

nouns. Lexically feminine nouns can also combine 

with masculine adjectives and this can be achieved by 

leaving the masculine value undefined so that the 

masculine adjectives can combine with all nouns. 

Lexical entry for an adjective will inherit from 

‘adjective-lex’. 

 

Adverbs: By default the adverb type definition 

inherits from matrix supertypes and constrains the 

modified constituent to be verbal. The adverb then has 

to be constrained to modify the V, VP or S. In Bengali 

adverb movement is prolific in that if it is moved 

around within the VP, the sentence and its syntactic 

tree remain grammatical. 

Hence the following type definition for adverbs is 

appropriate: 
adverb-lex := basic-adverb-lex &  
  intersective-mod-lex & 
  [ SYNSEM  
    [ LOCAL.CAT  
      [HEAD.MOD  
       < [ LOCAL.CAT.HEAD verb ]> 
      VAL [ SPR < >, 
            SUBJ < >, 
       COMPS < >, 
       SPEC < > ]]]]. 

 

The lexical entries for adverbs inherit from ‘adverb-

lex’. 

Due to adverb movement there will be multiple 

parse trees from a single sentence. The LKB system 

allows us to compare these in terms of adverb 

placement on particular nodes of the tree. 

 

Lexical Rules: Lexical rules for inflection are written 

in the irules.tdl and the lrules.tdl files and inherit from 

the types ‘infl-ltow-rule’ or the ‘infl-ltol-rule’, 

depending on whether the form is fully inflected or 

not, as defined by the Matrix. There are other infl* 

rule types in the Matrix for various kinds of lexical 

changes. For the first phase we’ve used the 

aforementioned two. The inflection is defined through 

instances of rule types in the irules.tdl where spelling 

rule subrules are denoted on a line beginning with 

%suffix. After %suffix there is a list of pairs in which 

the first member matches the input form and the 

second member describes the output form  and thus 

can handle complex morphoph onemic changes. The * 

matches an empty string and the ! signals a letter set. 

More specific rules are placed at the right and full 

forms can be written for suppletive forms. [1] 

 

4ominal Inflection: In the first phase nominal 

inflection is limited to plural and definiteness markers. 

In terms of pluralizers, nouns in Bengali differ in 

which plural marker can be added on the basis of 

topicality. The two most prolific plural markers are 

‘gula’ and ‘ra’. The marker ‘gula’ can be added to 

almost anything except for a few high topical nouns. 

‘ra’ on the other hand can only be added to high 

topical nouns. Hence TPC value constraints (high vs. 

non-high) prevent inappropriate marking. Some nouns 

can have both plural markers. In these cases the TPC 

value has been left undefined. 

The type definition for plural markers: 

;;; for noun + 'gulo' 
plur_noun1-lex-rule := infl-ltow-rule &  
 [ SYNSEM.LOCAL  
  [ CAT.VAL.SPR  
    < [ LOCAL.CONT.RELS  
      < ! [PRED reg_quant_rel ] ! > ] >, 
    CONT.HOOK.INDEX.PNG  
    [ PER third,  NUM sg, TPC non-high ] 
] ]. 

 

;;; for noun + 'ra' 
plur_noun2-lex-rule := infl-ltow-rule &  
 [ SYNSEM.LOCAL  
  [ CAT.VAL.SPR  
   < [LOCAL.CONT.RELS  
     < ! [PRED reg_quant_rel ] ! > ] >, 
   CONT.HOOK.INDEX.PNG  
    [ PER third, NUM sg, TPC high ] ] ]. 
 

And the suffix rules are: 
plur-noun1 := %suffix (* gulo) (!a 
!agulo)    
  plur_noun1-lex-rule.  
plur-noun2 := %suffix (* ra) (!a 
!ara)    
  plur_noun2-lex-rule. 

 
Here the letter set is:  
%(letter-set (!a 
abcdefghijklmnopqrstuvwxyz)) 

Definiteness markers can be added 

concatenatively to any common or count noun. Mass 



Bengali 

 106 

nouns are constrained through NUM values to prevent 

them from inflecting. 

 

Verbal Inflection: In Bengali the prototypical verb 

has the following structure: 

    ROOT  +  [aspect+tense+person-grade] / mode  

      kor    +    ch   +   il          e - n 

      do.root    prog.    past.      3P.hon 

 

The root, stripped of all inflection can only 

function as a stem in the second person pejorative 

imperative form. In all other forms the verb carries 

person, tense, aspect and modal information in the 

form of inflections and the root cannot occur on its 

own. 

Verbal inflection can be coded in two ways: 

Each person form of the verb root is added as a 

lexical entry whereby the person ending can act as the 

input for the suffix change rule for all other TAM 

forms.  
dekhi := trans-verb-lex & 
 [ STEM < "dekhi" >, 
   SYNSEM [LOCAL.CAT.VAL.SUBJ  
   < [LOCAL.CONT.HOOK.INDEX.PNG  
      [PER first, GRD non-hon]]>, 
   LKEYS.KEYREL.PRED "_dekhi_v_rel" 
] ]. 
 

Here the ‘i’ of ‘dekhi’ acts as the input for other 

forms of TAM inflection introduced by the following 

type definitions: 
 

1p_verb-lex-rule := infl-ltow-rule &  
  [SYNSEM.LOCAL.CAT.VAL.SUBJ 
    < [LOCAL.CONT.HOOK.INDEX.PNG  
        [ PER first ] ] >,  
   DTR.SYNSEM.LOCAL.CAT.HEAD verb ].  
1p-past_verb := 1p_verb-lex-rule. 
 

And the following suffix rule: 
 
1p-pastprog-verb := %suffix  
  (* chilam) (!ti !tchilam) 1p-
past_verb.  
1p-pluperf-verb := %suffix  
  (* echilam) (!ti !techilam) 1p-
past_verb. 

 

Thus the above two rules can generate the 

following forms from ‘dekhi’: 
 dekhi > dekhchilam 

 dekhi > dekhechilam 

An alternative to this would be to use the lrules.tdl 

file to create forms from the roots by using an instance 

of an infl* rule such as ‘infl-add-only-no-

ccont-ltol-rule’. This allows us to keep only 

the root form in the lexicon and generate all else with 

lexical rules. 

 

3. Results 
 

With the above grammar it is possible to 

recognize and parse a considerable number of 

grammatical sentences of Bengali as well as generate 

various other inflected forms form it.  

The result of parsing the sentence ‘tini amake 

bhalo aamti diechilen’ (he had given me the nice 

mango) is shown in Figure 1. 

 

 

Figure 1: Parse tree for "tini amake bhalo aamti 

diechilen” 

And the forms generated from the above sentence 

are given in Figure 2. 

 

4. Future Work 
 

The goal of developing a computational grammar 

for Bengali will inevitably coincide with the goals of 

any grammar development endeavor. This paper 

attempts to open up the avenue for a full-scale 

grammar development with the following long-term 

goals in mind: 

 

• To write a computational description of Bengali. 

• To test various linguistic hypotheses of Bengali using 

HPSG. 

• To make available a computational description of 

Bengali in order to aid various practical applications in 

NLP systems. 

• To create a resource of computational information for 

languages of similar grammatical makeup.  



Working Papers 2004-2007 

 107 

• To test hypotheses about linguistic universals that cut 

across languages. 

• To facilitate the exchange of data and analyses of a 

wide range of phenomena across diverse languages.  

 

 

Figure 2: Generated forms for "tini amake bhalo aamti 

diechilen" 

 

5. Conclusion 
 

This paper serves as the beginning phase of the 

development of a computational grammar for Bengali. 

As we have seen the HPSG formalism is a rich 

linguistic framework suited for the mammoth task of 

grammar engineering and combined with LKB, 

provides a suitable platform for the implementation of 

this formidable task. The various aspects of linguistic 

phenomena of Bengali have been accounted for and 

reinterpreted in an implementable framework. As an 

end result the rudimentary grammar is capable of 

parsing and generating a large number of sentences of 

Bengali. It is thus a point of beginning for further 

development of a large scale Bengali grammar and 

consequently a computational description that will 

prove extremely useful both from a computational and 

a linguistic perspective. 

 

 

 

6. Acknowledgement 
 

This work has been supported in part by the PAN 

Localization Project (www.panl10n.net), grant from 

the International Development Research Center, 

Ottawa, Canada, administrated through Center for 

Research in Urdu Language Processing, National 

University of Computer and Emerging Sciences, 

Pakistan. 

 

7. References 
 

[1] A. Copestake, Implementing Typed Feature 

Structure Grammars, CSLI Publications, Stanford, 

2002. 

 

[2] A. Copestake and D. Flickinger, “An open-source 

grammar development environment and broad-

coverage English grammar using HPSG”, In 

Proceedings LREC, Athens, Greece, 2000. 

 

[3] C. Pollard and I. Sag, Information-based Syntax 

and Semantics, Volume 1: Fundamentals, CSLI 

Publications, Stanford, 1987.  

 

[4] C. Pollard and I. Sag, Head-Driven Phrase 

Structure Grammar, University of Chicago Press, 

Chicago, 1994. 

 

[5] I. Sag and T. Wasow, Syntactic Theory: A Formal 

Introduction, CSLI Publications, Stanford, 1999.  

 

[6] S. Paul, An HPSG Account of Bangla Compound 

Verbs with LKB Implementation. Ph.D. thesis, 

University of Hyderabad, Hyderabad, 2004. 

 

[7] P. Sengupta and B. B. Chaudhuri, “A Delayed 

Syntactic-Encoding-based LFG Parsing Strategy for an 

Indian Language – Bangla”, Computational 

Linguistics, 23(2), 1997, pp. 345-351. 

 

[8] M.N. Haque and M. Khan, “Parsing Bangla Using 

LFG: An Introduction”, BRAC University Journal, 

2(1), 2005, pp. 105-110. 

 

[9] M.M. Hoque and M.M. Ali, “Context-Sensitive 

Phrase Structure Rule for Structural Representation of 

Bangla Natural Language Sentences”, In Proceedings 

of ICCIT, Dhaka, 2004, pp. 615-620. 

 

[10] M. M. Murshed, “Parsing of Bengali Natural 

Language Sentences”, In Proceedings of ICCIT, 

Dhaka, 1998, pp. 185-189. 



Bengali 

 108 

 

[11] M. R. Selim and M. Z. Iqbal, “Syntax Analysis of 

Phrases and Different Types of Sentences in Bangla”, 

In Proceedings of ICCIT, Dhaka, 1999, pp. 175-186. 

 

[12] M.M. Billah and M.R. Shikder. 2004. Syntax 

Analysis of Bangla Phrases. In Proceedings of ICCIT, 

Dhaka, pp. 669-673. 

 

[13] G.K. Saha, “Parsing Bengali Text: An Intelligent 

Approach”, ACM Ubiquity, 7(13), 2006. 

 

[14] S.K. Naskar and S. Bandyopadhyay, A Phrasal 

EBMT System for Translating English to Bengali. In 

Conference Proceedings: the tenth Machine 

Translation Summit, Phuket, Thailand, 2005, pp. 372-

379. 

 


