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Abstract 
 

This report discusses the theory and 

implementation of an Optical Character Recognition 

(OCR) for Bangla. The principal idea is to convert 

images of text documents such as those obtained from 

scanning a document into editable texts. This report 

does not address the pre-processing steps such as 

skew correction and noise reduction (which is handled 

in a previous report), so the documents are assumed to 

pre-processed by another tool in the pipeline. For 

training and recognition, the input is then first 

converted to a binary image, and then into to a 25x25 

pixel2 image; the only feature extracted from the 

images is a 625-bit long vector, which is then trained 

or classified using a Kohonen neural network. The 

OCR shows excellent performance for documents with 

single typeface. The work in progress is extending it to 

handle multiple typefaces. 

 

1. Introduction 
 

Optical Character Recognition abbreviated as OCR 

means that converting some text image into computer 

editable text format. For example we can say about 

ASCII code. But in this thesis Unicode is considered 

as converted text. Lots of recognition systems are 

available in computer science and also OCR plays a 

prominent role in computer science. Recognition 

system works well for simple language like English. It 

has only 26 character sets. And for standard text there 

are 52 numbers of characters including capital and 

small letters. But a complex but organized language 

like Bangla, OCR system is still in preliminary level. 

The reasons of its complexities are its character 

shapes, its top bars and end bars more over it has some 

modified, voweled and compound characters. 

In this report a new approach is described for 

Bangla character and some word recognition. Kohonen 

Neural Network is used for training and recognition 

procedure which means classification stage. At the 

beginning grayscale and then BW image conversion 

takes place for producing binary data. These pre-

processing steps are described in section 4. After that 

the image containing Bangla character(s) need to be 

converted into trainable form by means of processing 

steps. Processing steps are described in section 5. And 

about Kohonen network and its procedures are 

described in section 6. 

 

Table 1: List of Bangla Characters 

 
Bangla 

digits 

� � � � � � � � 	 
 

Bangla 

vowels 

� �  � � � � � � � � 

Modified 

vowels  

◌� �◌ ◌� ◌�  ◌�  ◌�  �◌ �◌ �◌� �◌   

Voweled 

characters 

!� �! !� " # !�  �! �! �!� �!  

Bangla 

consonants 

! $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 
9 : ; < = > ? @ A B C D E F 

Compound 

characters 

G H I J  ³  Kè eŸ ã ”Q ´ ”Q¡ ¶ ¾ ¶è ¾¡ ² 
Á K¬ Ä É ¼ 

 

2. Bangla Character Recognition 

Procedure 
 

As like all other recognition procedure character 

recognition is nothing but a recognition process. 

Several steps are present for a recognition specially 

character recognition system. Here a simple and 

general character recognition procedure (figure 1) is 

described below.  

First of all we need a large number of raw data or 

collected data which will be processed and later 

trained with the system. It is very important to collect a 

specific data. Later on we need to compare with 

similar kind of data. And also we have to think the 

complexity level of collected data because next steps 

will be dependent on my data type. It can be scanned 

documents or hand written documents.  

Secondly we have to consider pre-processing 

stage. Here mainly image processing procedures take 
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place. Like gray scale image conversion, binary image 

conversion, skew correction. Our processing stage 

depends on pre-processing stages. So we need to 

design our pre-processing steps with great care.  

Thirdly the processing steps are occurred. 

Thinning, Edge Detection, Chain Code, Pixel 

Mapping, Histogram Analysis are some feature of 

processing stages. This stage basically converts raw 

data into trainable components.   

Finally the training and recognition in short 

classification stage take place. The pre-processed and 

processed data is trained by means of taught the 

system about the incoming data. So later on it can 

easily recognize an input data.   

 

 
 

Figure 1: General character recognition process 

 

2.1. Bangla character recognition procedures 

with Kohonen network 
 

So far I have described about the character 

recognition procedure. Now I am describing the 

procedure used in my character recognition system 

(Figure 2). Steps are described below: 

a. Printed Bangla character in taken for raw 

data.  

b. Printed Bangla character is gray scaled and 

then converted into BW image in pre-

processing stage. 

c. Pixels are grabbed and mapped into specific 

area and vector is extracted from the image 

containing Bangla word or character. This 

part is considered as processing stage. 

d. Lastly Kohonen Neural Network is taken as 

classification stage. 

 

 
 

Figure 2: Bangla Character Recognition 

Procedure 

 

3. Data Collection 

 
As I said we have to choose our data type with 

great care. Because we have to develop our system 

according to our raw data or collected data. Here I am 

talking about Bangla character recognition so 

obviously I need Bangla character. But I am also 

considering some Bangla word as well. But no word 

level or character level segmentation is considered 

here rather whole single character image or single 

word image is taken as raw input. And before entering 

into the system the image is resized into 250 X 250 

pixels to satisfy the procedure. No matter whether it’s 

a character or word contained image. I took both 

computer image and scanned image for my system to 

be trained. But no skew correction took place here. So 

when we need scanned image we have to be careful 

about the image size and shape.  

Here the whole word is taken and trained. Because 

there are lots of features, irregular shapes and 

curvatures in Bangla characters as we have seen 

above. And still no general formula is generated for 

feature extraction from Bangla character. So rather 

then extracting characters from a word, the whole 

data 

collection 

pre-processing 

processing 

(feature 

extraction) 

classification 

raw data  

(printed) 

BW image 

pixel mapping 

and  

extracting vector 

kohonen 

neural network 

data 

collection 

pre-processing 

processing 

(feature 

extraction) 

classification 

raw data  

(printed or handwritten) 

BW image 

grayscale image 

thinning  

edge detection 

chain code 

pixel mapping 

histogram analysis 

neural network 

k-mean 

fuzzy C mean  

markov model 
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word is taken as input data in the first phase of Bangla 

character recognition system.   

One thing is really important here. That is the 

character size of the image. The character shouldn’t be 

partially present on the image and it shouldn’t be too 

small in size. In my system I am taking above 36 font 

size for each individual character or word. 

 

4. Image Processing 
 

A digital text image that is containing Bangla 

character is generally an RGB image. The figures 

below showing two types of image containing digital 

Bangla character. The character on Figure 3 is scanned 

and resized into 250 X 250 pixels. The same thing for 

the Figure 4 except scanning. 

 

                     

 
 

Figure 3: Scanned 

image 

Figure 4: 

Computer image 

 

4.1. RGB to grayscale image conversion 
 

In the pre-processing 1st stage I am converting the 

input RGB image into gray scale image. Here I am 

considering the Othu’s algorithm for RGB to gray 

scale conversion. The algorithm is given below: 

 

1. Count the number of pixel according to color (256 

colors) and save it to matrix count.  

 

2. Calculate probability matrix P of each color, Pi = 

counti / sum of count, 

 where i= 1, 2, … … 256. 

 

3. Find matrix omega, omegai = cumulative sum of Pi 

,  

where i= 1, 2,… … 256. 

 

4. Find matrix mu, mui = cumulative sum of Pi *i , 

where i= 1, 2, … … 

256 and mu_t = cumulative sum of P256 * 256 

 

5. Calculate matrix sigma_b_squared where, 

sigma_b_squaredi = (mu_t × omegai − mui) 2 / 

omegai - (1- omegai ) 

 

6. Find the location, idx, of the maximum value of 

sigma_b_squared. 

The maximum may extend over several bins, so 

average together the locations. 

 

7. If maximum is not a number, meaning that 

sigma_b_squared is all not a number, and then 

threshold is 0. 

 

8. If maximum is a finite number, threshold = (idx - 1) 

/ (256 - 1); 

 

Figure 5 below is showing an RGB image and 

Figure 6 is showing and grayscale converted image. 

 

                     

 

 

Figure 5: RGB 

(scanned) image 

Figure 6: 

Grayscale image 

 

4.2. Grayscale to binary image conversion 
 

In the pre-processing 2nd stage I am converting 

the gray scale image into binary image. In a grayscale 

image there are 256 combinations of black and white 

colors where 0 means pure black and 255 means pure 

white. This image is converted to binary image by 

checking whether or not each pixel value is grater than 

255•level (level, found by Otsu's Method). If the pixel 

value is grater than or equal to 255•level then the value 

is set to 1 i.e. white otherwise 0 i.e. black. Figure 7 is 

showing a grayscale image with 0-255 level of 

histogram and figure 8 is showing a BW or binary 

image with two level of histogram. 
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Figure 7: Grayscale image with histogram Figure 8: Binary image with histogram 

 

5. Feature Extraction 

 
Next and the most important feature of Bangla 

character recognition is feature extraction. In this 

system I am considering a few steps for extracting a 

vector. Our main target is finding a vector from the 

image. So image is processed and then binary image 

is created. So we have only 2 types of data on the 

image. Those are 1 for the white space and 0 for the 

black space. Now we have to pass the following steps 

for creating 625 length vector for a particular 

character or image. Those are:  

 

1. Pixel grabbing 

2. Finding probability of making square 

3. Mapped to sampled area 

4. Creating vector 

5. Representing character with a model no. 

 

5.1. Pixel grabbing from image 
 

As we are considering binary image and we also 

fixed the image size, so we can easily get 250 X 250 

pixels from a particular image containing Bangla 

character or word. One thing is clear that we can grab 

and separate only character portion from the digital 

image. In specific, we took a Bangla character 

contained image. And obviously it’s a binary image. 

As we specified that the pixel containing value 1 is a 

white spot and 0 for a black one, so naturally the 0 

portioned spots are the original character.   

 

5.2. Finding probability of making square 

 
Now we are going to sample the entire image 

into a specified portion so that we can get the vector 

easily. We specified an area of 25 X 25 pixels. For 

this we need to convert the 250 X 250 image into the 

25 X 25 area. So for each sampled area we need to 

take 10 X 10 pixels from binary image.  

We can give a short example for that. Table 2 is 

the original binary image of 25 X 15 pixels. We need 

to sampled it 5 X 3 pixels area. So, for each area we 

will consider 5 X 5 pixel from the binary image. 

Table 3 will show how pixels are classified for 

finding the probability of making square. 

 

Table 2: Initial pixel data from 

image 

Table 3: Separating the pixels 

0000011000001000000000000 

0000000000000000111000010 

0100000111001000111000100 

0010011111000100111000000 

0000000111000010000000000 

0111000000110001100100110 

0100000000011111001100000 

0011100000110001100100000 

00000 11000 00100 00000 00000 

00000 00000 00000 01110 00010 

01000 00111 00100 01110 00100 

00100 11111 00010 01110 00000 

00000 00111 00001 00000 00000 

 

01110 00000 11000 11001 00110 

01000 00000 01111 10011 00000 
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0111100000001111001101110 

0001100000001111100100001 

0000011000000000000011000 

0000000011000000011100000 

0000000000000000000000110 

0000011111000000011100000 

0000011111000000000000001 

 

00111 00000 11000 11001 00000 

01111 00000 00111 10011 01110 

00011 00000 00111 11001 00001 

 

00000 11000 00000 00000 11000 

00000 00011 00000 00111 00000 

00000 00000 00000 00000 00110 

00000 11111 00000 00111 00000 

00000 11111 00000 00000 00001 

 

5.3. Mapped to sampled area 
 

We can recall the previous example from Table 

4 Now the same sample pixel from binary image 

after separating is showing in table 5. Now we will 

find out for each 5 X 5 pixel from the separated pixel 

portion and give an unique number for each 

separated pixel class. And this number will be equal 

to the 5 X 3 sampled areas. Now we need no 

consider whether 5 X 5 pixels will make a black area 

or square or a white area or square. We will take the 

priority of 0s or 1s from 5 X 5 pixels. And from there 

we can say, if the 0s get the priority from 5X5 in ith 

location then we will make a black square on ith 

position of sample area. Table 4 is having a unique 

number of 5 X 5 separated pixels and table 5 in 

covering black or white depending on the 

probabilistic manner. 

 

 

 

Table 4: Separating the pixels Table 5: Making squares 

00000 11000 00100 00000 00000 

00000 00000 00000 01110 00010 

01000 00111 00100 01110 00100 

00100 11111 00010 01110 00000 

00000 00111 00001 00000 00000 

     1            2            3             4            5 

01110 00000 11000 11001 00110 

01000 00000 01111 10011 00000 

00111 00000 11000 11001 00000 

01111 00000 00111 10011 01110 

00011 00000 00111 11001 00001 

    6         7               8             9           10 

00000 11000 00000 00000 11000 

00000 00011 00000 00111 00000 

00000 00000 00000 00000 00110 

00000 11111 00000 00111 00000 

00000 11111 00000 00000 00001 

   11       12            13             14          15    

 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15  
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Here is an example of how a 250 X 250 pixels of 

Bangla character is sampled into 25 X 25 sampled 

area. 

 

 
 

Figure 9: A Bangla character after sampling 

 

5.4. Creating vector 
 

Once we have sampled the binary image we have 

black area and white are. Now we will put a single 1 

(one) for each black square and 0 (zero) for each 

white square. And Figure 9 from above is 

represented with 1s and 0s combination in Figure 10 

below. 

 

 
Figure 10: Sampled character representation 

 

Now we will collect each row, combine together 

and it will make a vector. Vector for Figure 10 is 

given in Figure 11. 

 

111111111111111111111111111111111111111111

111111111111111111111111111111111111111010

010111111110110000000010011111111101010000

000000011111111111000000000000111111111111

111000000001111111111111111110000001111111

111110011111000001111111101110001111100011

111111000111000011111001111110100011100101

111100111111110001111111111110001111111100

111111111111000011111111011101111111000001

011111111111111111100000000011111111111111

100000000000011111110111100000000000000111

111010010000000000000011110000000000000000

000001111100000000000000000000011110000000

000000000000001110000000000000000000000011

1000000000000000000000111000000000 

 

Figure 11: vector representation 

 

5.5. Representing a character with a model 

number 
 

One thing we need to mention here. That is, we 

gave a 4 digit numerical number as a model for each 

vector and also the corresponding Bangla word or 

character from that particular model. This is because 

Bangla character is unique length. But we are also 

considering Bangla word which has irregular length. 

When we need to train, we will train it with its model 

no. and model number knows its corresponding 

Bangla character. So in short we can say that, a 

particular model has a unique vector with the length 

of 625 characters of 1s and 0s and a unique Bangla 

character.   

 

6. Kohonen �eural �etwork 
 

We did lots of activities in pre-processing stages 

and as well as in processing stage. The main idea is 

to make it simple and acceptable for Kohonen Neural 

Network. The Kohonen neural network contains no 

hidden layer. This network architecture is named 

after its creator, Tuevo Kohonen. The Kohonen 

neural network differs from the feedfroward back 

propagation neural network in several important 

ways. In this chapter we will examine the Kohonen 

neural network and see how it is implemented. 

 

6.1. Introduction to Kohonen network 
 

The Kohonen neural network differs 

considerably from the feedforward back propagation 

neural network. The Kohonen neural network differs 

both in how it is trained and how it recalls a pattern. 

1111111111111111111111111 

1111111111111111111111111 

1111111111111111111111111 

1111110100101111111101100 

0000001001111111111010100 

0000000001111111111100000 

0000000111111111111111000 

0000011111111111111111100 

0000111111111111001111100 

0001111111100111000111110 

0011111111000111000011111 

0011111101000111001011111 

0011111111000111111111111 

0001111111100111111111111 

0000111111110111011111110 

0000101111111111111111110 

0000000011111111111111100 

0000000000111111101111000 

0000000000011111101001000 

0000000000001111000000000 

0000000000001111100000000 

0000000000000111100000000 

0000000000000111000000000 

0000000000000011100000000 

0000000000000111000000000 
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The Kohohen neural network does not use any sort of 

activation function. Further, the Kohonen neural 

network does not use any sort of a bias weight. 

Output from the Kohonen neural network does 

not consist of the output of several neurons. When a 

pattern is presented to a Kohonen network one of the 

output neurons is selected as a "winner". This 

"winning" neuron is the output from the Kohonen 

network. Often these "winning" neurons represent 

groups in the data that is presented to the Kohonen 

network. For example, in our system we consider 10 

Bangla digits, 11 vowels, 36 consonants, and 42 

words in total 100 models. The most significant 

difference between the Kohonen neural network and 

the feed forward back propagation neural network is 

that the Kohonen network trained in an unsupervised 

mode. This means that the Kohonen network is 

presented with data, but the correct output that 

corresponds to that data is not specified. Using the 

Kohonen network this data can be classified into 

groups. We will begin our review of the Kohonen 

network by examining the training process. 

As our vector length is 625 so our input layer 

has 625 neurons. But in our output layer the number 

of neuron depends on the number of character trained 

with the network. As we take 625 as input and n for 

output character, we can draw our suitable Kohonen 

Neural Network as shown in Figure 12. 

 

 

 
 

Figure 12: Kohonen neural network design for Bangla character recognition 

 

6.2. The structure of Kohonen network 
 

The Kohonen neural network contains only an 

input and output layer of neurons. There is no hidden 

layer in a Kohonen neural network. First we will 

examine the input and output to a Kohonen neural 

network. 

The input to a Kohonen neural network is given 

to the neural network using the input neurons. These 

input neurons are each given the floating point 

numbers that make up the input pattern to the 

network. A Kohonen neural network requires that 

these inputs be normalized to the range between -1 

and 1. Presenting an input pattern to the network will 

cause a reaction from the output neurons. In a 

Kohonen neural network only one of the output 

neurons actually produces a value. Additionally, this 

single value is either true or false. When the pattern 

is presented to the Kohonen neural network, one 

single output neuron is chosen as the output neuron. 

Therefore, the output from the Kohonen neural 

network is usually the index of the neuron that fired. 

The structure of a typical Kohonen neural network is 

shown in Figure 13. 

 

6.3. Sample input to Kohonen network 
As we understand the structure of the Kohonen 

neural network we will examine how the network 

processes information. To examine this process we 

will step through the calculation process. For this 

  

Output 

Input 

0 1 2 n 

1 2 3 4 5 6 7 8 624 625 

weight

Input 
value 
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example we will consider a very simple Kohonen 

neural network. This network will have only two 

input and two output neurons. The input given to the 

two input neurons is shown in Table 6. 

 

 
 

Figure 13: A simple Kohonen neural network 

with 2 input and 2 output neurons 

 

Table 6: Sample inputs to a Kohonen neural 

network 

 

Input Neuron 1 (I1) 0.5 

Input Neuron 2 (I2) 0.75 

 

We must also know the connection weights 

between the neurons. These connection weights are 

given in Table 7. 

 

Table 7: Connection weights in the sample 

Kohonen neural network 

I1->O1 0.1 

I2->O1 0.2 

I1->O2 0.3 

I2->O2 0.4 

 

Using these values we will now examine which 

neuron would win and produce output. We will begin 

by normalizing the input. 

 

6.4. �ormalizing the input 
The requirements that the Kohonen neural 

network places on its input data are one of the most 

sever limitations of the Kohonen neural network. 

Input to the Kohonen neural network should be 

between the values -1 and 1. In addition, each of the 

inputs should fully use the range. If one, or more, of 

the input neurons were to use only the numbers 

between 0 and 1, the performance of the neural 

network would suffer. 

To normalize the input we must first calculate 

the "vector length" of the input data, or vector. This 

is done by summing the squares of the input vector. 

In this case it would be. (0.5 * 0.5) + (0.75 * 0.75). 

This would result in a "vector length" of 0.8125. If 

the length becomes too small, say less than the length 

is set to that same arbitrarily small value. In this case 

the "vector length" is a sufficiently large number. 

Using this length we can now determine the 

normalization factor. The normalization factor is the 

reciprocal of the square root of the length. For our 

value the normalization factor is calculated as 

follows, 
8125.0

1
 and this results in a 

normalization factor of 1.1094. This normalization 

process will be used in the next step where the output 

layer is calculated. 

 

6.5. Calculating each neuron’s output 
 

To calculate the output the input vector and 

neuron connection weights must both be considered. 

First the "dot product" of the input neurons and their 

connection weights must be calculated. To calculate 

the dot product between two vectors you must 

multiply each of the elements in the two vectors. We 

will now examine how this is done. 

The Kohonen algorithm specifies that we must 

take the dot product of the input vector and the 

weights between the input neurons and the output 

neurons. The result of this is as follows. 

 

)2.0*1.0()75.0*5.0(2.01.075.05.0 +=•

 

As we can see from the above calculation the dot 

product would be 0.395. This calculation will be 

performed for the first output neuron. This 
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calculation will have to be done for each of the 

output neurons. Through this example we will only 

examine the calculations for the first output neuron. 

The calculations necessary for the second output 

neuron are calculated in the same way. 

This output must now be normalized by 

multiplying it by the normalization factor that was 

determined in the previous step. We must now 

multiply the dot product of 0.395 by the 

normalization factor of 1.1094. This results in an 

output of 0.438213. Now that the output has been 

calculated and normalized it must be mapped to a 

bipolar number. 

 

6.6. Mapping to bipolar 
 

In the bipolar system the binary zero maps to -1 

and the binary remains a 1. Because the input to the 

neural network normalized to this range we must 

perform a similar normalization to the output of the 

neurons. To make this mapping we add one and 

divide the result in half. For the output of 0.438213 

this would result in a final output of 0.7191065. 

The value 0.7191065 is the output of the first 

neuron. This value will be compared with the outputs 

of the other neuron. By comparing these values we 

can determine a "winning" neuron. 

 

6.7. Choosing a winner  
 

We have seen how to calculate the value for the 

first output neuron. If we are to determine a winning 

output neuron we must also calculate the value for 

the second output neuron. We will now quickly 

review the process to calculate the second neuron. 

For a more detailed description you should refer to 

the previous section. 

The second output neuron will use exactly the 

same normalization factor as was used to calculate 

the first output neuron. As you recall from the 

previous section the normalization factor is 1.1094. 

If we apply the dot product for the weights of the 

second output neuron and the input vector we get a 

value of 0.45. This value is multiplied by the 

normalization factor of 1.1094 to give the value of 

0.0465948. We can now calculate the final output for 

neuron 2 by converting the output of 0.0465948 to 

bipolar yields 0.49923. 

As we can see we now have an output value for 

each of the neurons. The first neuron has an output 

value of 0.7191065 and the second neuron has an 

output value of 0.49923. To choose the winning 

neuron we choose the output that has the largest 

output value. In this case the winning neuron is the 

first output neuron with an output of 0.7191065, 

which beats neuron two's output of 0.49923. 

We have now seen how the output of the 

Kohonen neural network was derived. As we can see 

the weights between the input and output neurons 

determine this output.  

 

6.8. Learning algorithm flowchart 
 

 

Figure 14: Learning Algorithm Flowchart 
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6.9. Kohonen network learning procedure 
 

The training process for the Kohonen neural 

network is competitive. For each training set one 

neuron will "win". This winning neuron will have its 

weight adjusted so that it will react even more 

strongly to the input the next time. As different 

neurons win for different patterns, their ability to 

recognize that particular pattern will be increased.  

We will first examine the overall process 

involving training the Kohonen neural network. 

 

6.10. Learning rate 
 

The learning rate is a constant that will be used 

by the learning algorithm. The learning rate must be 

a positive number less than 1. Typically the learning 

rate is a number such as .4 or .5. In the following 

section the learning rate will be specified by the 

symbol alpha. 

Generally setting the learning rate to a larger 

value will cause the training to progress faster. 

Though setting the learning rate to too large a 

number could cause the network to never converge. 

This is because the oscillations of the weight vectors 

will be too great for the classification patterns to ever 

emerge. Another technique is to start with a relatively 

high learning rate and decrease this rate as training 

progresses. This allows initial rapid training of the 

neural network that will be "fine tuned" as training 

progresses. The learning rate is just a variable that is 

used as part of the algorithm used to adjust the 

weights of the neurons. 

 

6.11. Adjusting weight 
 

The entire memory of the Kohonen neural 

network is stored inside of the weighted connections 

between the input and output layer. The weights are 

adjusted in each epoch. An epoch occurs when 

training data is presented to the Kohonen neural 

network and the weights are adjusted based on the 

results of this item of training data. The adjustments 

to the weights should produce a network that will 

yield more favorable results the next time the same 

training data is presented. Epochs continue as more 

and more data is presented to the network and the 

weights are adjusted. 

Eventually the return on these weight 

adjustments will diminish to the point that it is no 

longer valuable to continue with this particular set of 

weights. When this happens the entire weight matrix 

is reset to new random values. This forms a new 

cycle. The final weight matrix that will be used will 

be the best weight matrix determined from each of 

the cycles. We will now examine how these weights 

are transformed. 

The original method for calculating the changes 

to weights, which was proposed by Kohonen, is often 

called the additive method. This method uses the 

following equation, 
axw

axw
w

t

t
t

+

+
=

+1
. The variable 

x is the training vector that was presented to the 

network. The variable w
t
 is the weight of the winning 

neuron, and the variable w
t+1

 is the new weight. The 

double vertical bars represent the vector length.  

The additive method generally works well for 

Kohonen neural networks. Though in cases where the 

additive method shows excessive instability, and fails 

to converge, an alternate method can be used. This 

method is called the subtractive method. The 

subtractive method uses the following equations. 
twxe −=  and aeww tt

+=
+1

. These two 

equations show you the basic transformation that will 

occur on the weights of the network.  

 

6.12. Calculating the errors 
 

Before we can understand how to calculate the 

error for chronic neural network must first 

understand what the error means. The coming neural 

network is trained in an unsupervised fashion so the 

definition of the error is somewhat different 

involving the normally think of as an error.  

The purpose of the Kohonen neural network is to 

classify the input into several sets. The error for the 

Kohonen neural network, therefore, must be able to 

measure how well the network is classifying these 

items.  

 

6.13. Recognition with Kohonen network 

 
So for a given pattern we can easily find out the 

vector and can send it through the Kohonen Neural 

Network. And for that particular pattern any one of 

the neuron will be fired. As for all input pattern the 

weight is normalized so the input pattern will be 

calculated with the normalized weight. As a result the 

fired neuron is the best answer for that particular 

input pattern. 
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7. Functional Output 
 

According to my system stated above, I 

conducted a study on the accuracy level for different 

input data. It is important because it is an identifier of 

feasibility and efficiency. I consider both accuracy 

rates and also some drawbacks respected to the 

described Bangla Character Recognition process. 

 

7.1. Accuracy rates 
 

Table 8 shows some accuracy level for different 

input data. The data is considered as trained 

characters or words, untrained similar fonts 

(solaiman lipi is the trained font and similar font is 

dhanshiri), scanned documents are of solaiman lipi 

fonts and lastly irregular shape fonts (some big or 

small fonts). 

 

Table 8: Accuracy rates corresponding to 

different sectors 

 

Character/words Accuracy rate 

Trained 100% 

Untrained similar fonts 99% 

Scanned docs. 99% 

Irregular font size 98% 

 

7.2. Drawbacks 
 

As I said we are at the preliminary level of the 

Bangla Character Recognition so the main drawback 

we can consider is we need to modify and make it 

more accurate. Again like all other Neural Network 

training time increase with the increase in number of 

characters or words in Kohonen Neural Network. 

Besides I defined fixed picture size 250 X 250. So it 

will not work for different image documents. So it 

needs to be more generalized. Finally the system 

can’t work for small fonts. This is because; we need 

to grab the pixels at first from the original image 

documents. Then we need to map it. But in the case 

of small Bangla fonted image it can’t grab the pixel 

from original documents. So it creates problem for 

recognizing small fonts. 

 

 

8. Conclusion and Future Work 
 

8.1. Conclusion 
 

This report tries to emphasise on a way or 

method of Bangla character recognition in the 

simplest possible manner. But there are lots of ways 

to implement it that could be more efficient than 

Kohonen Neural Network. But successfully the 

research comes to an end. And at the conclusion I 

can quote that there is a huge area to research on 

Bangla Character and its recognition procedure.  

  

8.2. Future work 
 

I stated above that there is a vast area of research 

on Bangla Character Recognition. Complex character 

based language like Bangla needs deep research to 

meet its goal. Number of input neuron in my system 

is quite high. It can be reduced by segmenting 

character. But inaccuracy is palpable in segmentation 

of Bangla character. So efficient system is still far 

away. We can think about the basic characteristics of 

Bangla character and those characters can be 

grouped and then segmented. Thus the number of 

input neuron can be reduced. And also Kohonen 

Network is used based on the feature of each Bangla 

character. 
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Appendix A 
 

A.1. UML diagram for feature extraction 
 

Here the main class is Bangla that contains GUI 

of the system. It usually helps to take image as input. 

Picture container actually contains the image and 

image component helps to draw into Bangla GUI 

pixel by pixel. Again the sample class used to sample 

the input image. The class SampleData split the input 

image pixel by pixel, normalize and modify it and 

returns the sampled data.  

 

Figure A.1: UML diagram for feature extraction 

 

A.2. UML diagram for Kohonen network 
 

This is a simple diagram for Kohonen Network. 

Network is the actual design of the Kohonen 

Network. Kohonen Network actually uses the 

attributes of Network class. And the training 

methodology is stands on the TrainingSet class. 

Winning selection, normalizing, error detection, 

analyzing is the part of TrainingSet class. 

 

 
 

Figure A.2: UML diagram for Kohonen network 

 

 


