
Research Report on Bangla Optical Character Recognition Using Kohonen

�etwork

Adnan Md. Shoeb Shatil

Center for Research on Bangla Language Processing

BRAC University, Dhaka, Bangladesh.

shoeb_shatil@yahoo.com

Abstract

This report discusses the theory and

implementation of an Optical Character Recognition

(OCR) for Bangla. The principal idea is to convert

images of text documents such as those obtained from

scanning a document into editable texts. This report

does not address the pre-processing steps such as

skew correction and noise reduction (which is handled

in a previous report), so the documents are assumed to

pre-processed by another tool in the pipeline. For

training and recognition, the input is then first

converted to a binary image, and then into to a 25x25

pixel2 image; the only feature extracted from the

images is a 625-bit long vector, which is then trained

or classified using a Kohonen neural network. The

OCR shows excellent performance for documents with

single typeface. The work in progress is extending it to

handle multiple typefaces.

1. Introduction

Optical Character Recognition abbreviated as OCR

means that converting some text image into computer

editable text format. For example we can say about

ASCII code. But in this thesis Unicode is considered

as converted text. Lots of recognition systems are

available in computer science and also OCR plays a

prominent role in computer science. Recognition

system works well for simple language like English. It

has only 26 character sets. And for standard text there

are 52 numbers of characters including capital and

small letters. But a complex but organized language

like Bangla, OCR system is still in preliminary level.

The reasons of its complexities are its character

shapes, its top bars and end bars more over it has some

modified, voweled and compound characters.

In this report a new approach is described for

Bangla character and some word recognition. Kohonen

Neural Network is used for training and recognition

procedure which means classification stage. At the

beginning grayscale and then BW image conversion

takes place for producing binary data. These pre-

processing steps are described in section 4. After that

the image containing Bangla character(s) need to be

converted into trainable form by means of processing

steps. Processing steps are described in section 5. And

about Kohonen network and its procedures are

described in section 6.

Table 1: List of Bangla Characters

Bangla

digits

� � � � � � � � 	

Bangla

vowels

� � � � � � � � � �

Modified

vowels

◌� �◌ ◌� ◌� ◌� ◌� �◌ �◌ �◌� �◌

Voweled

characters

!� �! !� " # !� �! �! �!� �!

Bangla

consonants

! $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8
9 : ; < = > ? @ A B C D E F

Compound

characters

G H I J ³ Kè eŸ ã ”Q ´ ”Q¡ ¶ ¾ ¶è ¾¡ ²
Á K¬ Ä É ¼

2. Bangla Character Recognition

Procedure

As like all other recognition procedure character

recognition is nothing but a recognition process.

Several steps are present for a recognition specially

character recognition system. Here a simple and

general character recognition procedure (figure 1) is

described below.

First of all we need a large number of raw data or

collected data which will be processed and later

trained with the system. It is very important to collect a

specific data. Later on we need to compare with

similar kind of data. And also we have to think the

complexity level of collected data because next steps

will be dependent on my data type. It can be scanned

documents or hand written documents.

Secondly we have to consider pre-processing

stage. Here mainly image processing procedures take

Working Papers 2004-2007

 149

place. Like gray scale image conversion, binary image

conversion, skew correction. Our processing stage

depends on pre-processing stages. So we need to

design our pre-processing steps with great care.

Thirdly the processing steps are occurred.

Thinning, Edge Detection, Chain Code, Pixel

Mapping, Histogram Analysis are some feature of

processing stages. This stage basically converts raw

data into trainable components.

Finally the training and recognition in short

classification stage take place. The pre-processed and

processed data is trained by means of taught the

system about the incoming data. So later on it can

easily recognize an input data.

Figure 1: General character recognition process

2.1. Bangla character recognition procedures

with Kohonen network

So far I have described about the character

recognition procedure. Now I am describing the

procedure used in my character recognition system

(Figure 2). Steps are described below:

a. Printed Bangla character in taken for raw

data.

b. Printed Bangla character is gray scaled and

then converted into BW image in pre-

processing stage.

c. Pixels are grabbed and mapped into specific

area and vector is extracted from the image

containing Bangla word or character. This

part is considered as processing stage.

d. Lastly Kohonen Neural Network is taken as

classification stage.

Figure 2: Bangla Character Recognition

Procedure

3. Data Collection

As I said we have to choose our data type with

great care. Because we have to develop our system

according to our raw data or collected data. Here I am

talking about Bangla character recognition so

obviously I need Bangla character. But I am also

considering some Bangla word as well. But no word

level or character level segmentation is considered

here rather whole single character image or single

word image is taken as raw input. And before entering

into the system the image is resized into 250 X 250

pixels to satisfy the procedure. No matter whether it’s

a character or word contained image. I took both

computer image and scanned image for my system to

be trained. But no skew correction took place here. So

when we need scanned image we have to be careful

about the image size and shape.

Here the whole word is taken and trained. Because

there are lots of features, irregular shapes and

curvatures in Bangla characters as we have seen

above. And still no general formula is generated for

feature extraction from Bangla character. So rather

then extracting characters from a word, the whole

data

collection

pre-processing

processing

(feature

extraction)

classification

raw data

(printed)

BW image

pixel mapping

and

extracting vector

kohonen

neural network

data

collection

pre-processing

processing

(feature

extraction)

classification

raw data

(printed or handwritten)

BW image

grayscale image

thinning

edge detection

chain code

pixel mapping

histogram analysis

neural network

k-mean

fuzzy C mean

markov model

Bengali

 150

word is taken as input data in the first phase of Bangla

character recognition system.

One thing is really important here. That is the

character size of the image. The character shouldn’t be

partially present on the image and it shouldn’t be too

small in size. In my system I am taking above 36 font

size for each individual character or word.

4. Image Processing

A digital text image that is containing Bangla

character is generally an RGB image. The figures

below showing two types of image containing digital

Bangla character. The character on Figure 3 is scanned

and resized into 250 X 250 pixels. The same thing for

the Figure 4 except scanning.

Figure 3: Scanned

image

Figure 4:

Computer image

4.1. RGB to grayscale image conversion

In the pre-processing 1st stage I am converting the

input RGB image into gray scale image. Here I am

considering the Othu’s algorithm for RGB to gray

scale conversion. The algorithm is given below:

1. Count the number of pixel according to color (256

colors) and save it to matrix count.

2. Calculate probability matrix P of each color, Pi =

counti / sum of count,

 where i= 1, 2, … … 256.

3. Find matrix omega, omegai = cumulative sum of Pi

,

where i= 1, 2,… … 256.

4. Find matrix mu, mui = cumulative sum of Pi *i ,

where i= 1, 2, … …

256 and mu_t = cumulative sum of P256 * 256

5. Calculate matrix sigma_b_squared where,

sigma_b_squaredi = (mu_t × omegai − mui) 2 /

omegai - (1- omegai)

6. Find the location, idx, of the maximum value of

sigma_b_squared.

The maximum may extend over several bins, so

average together the locations.

7. If maximum is not a number, meaning that

sigma_b_squared is all not a number, and then

threshold is 0.

8. If maximum is a finite number, threshold = (idx - 1)

/ (256 - 1);

Figure 5 below is showing an RGB image and

Figure 6 is showing and grayscale converted image.

Figure 5: RGB

(scanned) image

Figure 6:

Grayscale image

4.2. Grayscale to binary image conversion

In the pre-processing 2nd stage I am converting

the gray scale image into binary image. In a grayscale

image there are 256 combinations of black and white

colors where 0 means pure black and 255 means pure

white. This image is converted to binary image by

checking whether or not each pixel value is grater than

255•level (level, found by Otsu's Method). If the pixel

value is grater than or equal to 255•level then the value

is set to 1 i.e. white otherwise 0 i.e. black. Figure 7 is

showing a grayscale image with 0-255 level of

histogram and figure 8 is showing a BW or binary

image with two level of histogram.

Working Papers 2004-2007

 151

Figure 7: Grayscale image with histogram Figure 8: Binary image with histogram

5. Feature Extraction

Next and the most important feature of Bangla

character recognition is feature extraction. In this

system I am considering a few steps for extracting a

vector. Our main target is finding a vector from the

image. So image is processed and then binary image

is created. So we have only 2 types of data on the

image. Those are 1 for the white space and 0 for the

black space. Now we have to pass the following steps

for creating 625 length vector for a particular

character or image. Those are:

1. Pixel grabbing

2. Finding probability of making square

3. Mapped to sampled area

4. Creating vector

5. Representing character with a model no.

5.1. Pixel grabbing from image

As we are considering binary image and we also

fixed the image size, so we can easily get 250 X 250

pixels from a particular image containing Bangla

character or word. One thing is clear that we can grab

and separate only character portion from the digital

image. In specific, we took a Bangla character

contained image. And obviously it’s a binary image.

As we specified that the pixel containing value 1 is a

white spot and 0 for a black one, so naturally the 0

portioned spots are the original character.

5.2. Finding probability of making square

Now we are going to sample the entire image

into a specified portion so that we can get the vector

easily. We specified an area of 25 X 25 pixels. For

this we need to convert the 250 X 250 image into the

25 X 25 area. So for each sampled area we need to

take 10 X 10 pixels from binary image.

We can give a short example for that. Table 2 is

the original binary image of 25 X 15 pixels. We need

to sampled it 5 X 3 pixels area. So, for each area we

will consider 5 X 5 pixel from the binary image.

Table 3 will show how pixels are classified for

finding the probability of making square.

Table 2: Initial pixel data from

image

Table 3: Separating the pixels

0000011000001000000000000

0000000000000000111000010

0100000111001000111000100

0010011111000100111000000

0000000111000010000000000

0111000000110001100100110

0100000000011111001100000

0011100000110001100100000

00000 11000 00100 00000 00000

00000 00000 00000 01110 00010

01000 00111 00100 01110 00100

00100 11111 00010 01110 00000

00000 00111 00001 00000 00000

01110 00000 11000 11001 00110

01000 00000 01111 10011 00000

Bengali

 152

0111100000001111001101110

0001100000001111100100001

0000011000000000000011000

0000000011000000011100000

0000000000000000000000110

0000011111000000011100000

0000011111000000000000001

00111 00000 11000 11001 00000

01111 00000 00111 10011 01110

00011 00000 00111 11001 00001

00000 11000 00000 00000 11000

00000 00011 00000 00111 00000

00000 00000 00000 00000 00110

00000 11111 00000 00111 00000

00000 11111 00000 00000 00001

5.3. Mapped to sampled area

We can recall the previous example from Table

4 Now the same sample pixel from binary image

after separating is showing in table 5. Now we will

find out for each 5 X 5 pixel from the separated pixel

portion and give an unique number for each

separated pixel class. And this number will be equal

to the 5 X 3 sampled areas. Now we need no

consider whether 5 X 5 pixels will make a black area

or square or a white area or square. We will take the

priority of 0s or 1s from 5 X 5 pixels. And from there

we can say, if the 0s get the priority from 5X5 in ith

location then we will make a black square on ith

position of sample area. Table 4 is having a unique

number of 5 X 5 separated pixels and table 5 in

covering black or white depending on the

probabilistic manner.

Table 4: Separating the pixels Table 5: Making squares

00000 11000 00100 00000 00000

00000 00000 00000 01110 00010

01000 00111 00100 01110 00100

00100 11111 00010 01110 00000

00000 00111 00001 00000 00000

 1 2 3 4 5

01110 00000 11000 11001 00110

01000 00000 01111 10011 00000

00111 00000 11000 11001 00000

01111 00000 00111 10011 01110

00011 00000 00111 11001 00001

 6 7 8 9 10

00000 11000 00000 00000 11000

00000 00011 00000 00111 00000

00000 00000 00000 00000 00110

00000 11111 00000 00111 00000

00000 11111 00000 00000 00001

 11 12 13 14 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Working Papers 2004-2007

 153

Here is an example of how a 250 X 250 pixels of

Bangla character is sampled into 25 X 25 sampled

area.

Figure 9: A Bangla character after sampling

5.4. Creating vector

Once we have sampled the binary image we have

black area and white are. Now we will put a single 1

(one) for each black square and 0 (zero) for each

white square. And Figure 9 from above is

represented with 1s and 0s combination in Figure 10

below.

Figure 10: Sampled character representation

Now we will collect each row, combine together

and it will make a vector. Vector for Figure 10 is

given in Figure 11.

11

111111111111111111111111111111111111111010

010111111110110000000010011111111101010000

000000011111111111000000000000111111111111

111000000001111111111111111110000001111111

111110011111000001111111101110001111100011

111111000111000011111001111110100011100101

111100111111110001111111111110001111111100

111111111111000011111111011101111111000001

011111111111111111100000000011111111111111

100000000000011111110111100000000000000111

111010010000000000000011110000000000000000

000001111100000000000000000000011110000000

000000000000001110000000000000000000000011

1000000000000000000000111000000000

Figure 11: vector representation

5.5. Representing a character with a model

number

One thing we need to mention here. That is, we

gave a 4 digit numerical number as a model for each

vector and also the corresponding Bangla word or

character from that particular model. This is because

Bangla character is unique length. But we are also

considering Bangla word which has irregular length.

When we need to train, we will train it with its model

no. and model number knows its corresponding

Bangla character. So in short we can say that, a

particular model has a unique vector with the length

of 625 characters of 1s and 0s and a unique Bangla

character.

6. Kohonen �eural �etwork

We did lots of activities in pre-processing stages

and as well as in processing stage. The main idea is

to make it simple and acceptable for Kohonen Neural

Network. The Kohonen neural network contains no

hidden layer. This network architecture is named

after its creator, Tuevo Kohonen. The Kohonen

neural network differs from the feedfroward back

propagation neural network in several important

ways. In this chapter we will examine the Kohonen

neural network and see how it is implemented.

6.1. Introduction to Kohonen network

The Kohonen neural network differs

considerably from the feedforward back propagation

neural network. The Kohonen neural network differs

both in how it is trained and how it recalls a pattern.

1111111111111111111111111

1111111111111111111111111

1111111111111111111111111

1111110100101111111101100

0000001001111111111010100

0000000001111111111100000

0000000111111111111111000

0000011111111111111111100

0000111111111111001111100

0001111111100111000111110

0011111111000111000011111

0011111101000111001011111

0011111111000111111111111

0001111111100111111111111

0000111111110111011111110

0000101111111111111111110

0000000011111111111111100

0000000000111111101111000

0000000000011111101001000

0000000000001111000000000

0000000000001111100000000

0000000000000111100000000

0000000000000111000000000

0000000000000011100000000

0000000000000111000000000

Bengali

 154

The Kohohen neural network does not use any sort of

activation function. Further, the Kohonen neural

network does not use any sort of a bias weight.

Output from the Kohonen neural network does

not consist of the output of several neurons. When a

pattern is presented to a Kohonen network one of the

output neurons is selected as a "winner". This

"winning" neuron is the output from the Kohonen

network. Often these "winning" neurons represent

groups in the data that is presented to the Kohonen

network. For example, in our system we consider 10

Bangla digits, 11 vowels, 36 consonants, and 42

words in total 100 models. The most significant

difference between the Kohonen neural network and

the feed forward back propagation neural network is

that the Kohonen network trained in an unsupervised

mode. This means that the Kohonen network is

presented with data, but the correct output that

corresponds to that data is not specified. Using the

Kohonen network this data can be classified into

groups. We will begin our review of the Kohonen

network by examining the training process.

As our vector length is 625 so our input layer

has 625 neurons. But in our output layer the number

of neuron depends on the number of character trained

with the network. As we take 625 as input and n for

output character, we can draw our suitable Kohonen

Neural Network as shown in Figure 12.

Figure 12: Kohonen neural network design for Bangla character recognition

6.2. The structure of Kohonen network

The Kohonen neural network contains only an

input and output layer of neurons. There is no hidden

layer in a Kohonen neural network. First we will

examine the input and output to a Kohonen neural

network.

The input to a Kohonen neural network is given

to the neural network using the input neurons. These

input neurons are each given the floating point

numbers that make up the input pattern to the

network. A Kohonen neural network requires that

these inputs be normalized to the range between -1

and 1. Presenting an input pattern to the network will

cause a reaction from the output neurons. In a

Kohonen neural network only one of the output

neurons actually produces a value. Additionally, this

single value is either true or false. When the pattern

is presented to the Kohonen neural network, one

single output neuron is chosen as the output neuron.

Therefore, the output from the Kohonen neural

network is usually the index of the neuron that fired.

The structure of a typical Kohonen neural network is

shown in Figure 13.

6.3. Sample input to Kohonen network
As we understand the structure of the Kohonen

neural network we will examine how the network

processes information. To examine this process we

will step through the calculation process. For this

Output

Input

0 1 2 n

1 2 3 4 5 6 7 8 624 625

weight

Input
value

Working Papers 2004-2007

 155

example we will consider a very simple Kohonen

neural network. This network will have only two

input and two output neurons. The input given to the

two input neurons is shown in Table 6.

Figure 13: A simple Kohonen neural network

with 2 input and 2 output neurons

Table 6: Sample inputs to a Kohonen neural

network

Input Neuron 1 (I1) 0.5

Input Neuron 2 (I2) 0.75

We must also know the connection weights

between the neurons. These connection weights are

given in Table 7.

Table 7: Connection weights in the sample

Kohonen neural network

I1->O1 0.1

I2->O1 0.2

I1->O2 0.3

I2->O2 0.4

Using these values we will now examine which

neuron would win and produce output. We will begin

by normalizing the input.

6.4. �ormalizing the input
The requirements that the Kohonen neural

network places on its input data are one of the most

sever limitations of the Kohonen neural network.

Input to the Kohonen neural network should be

between the values -1 and 1. In addition, each of the

inputs should fully use the range. If one, or more, of

the input neurons were to use only the numbers

between 0 and 1, the performance of the neural

network would suffer.

To normalize the input we must first calculate

the "vector length" of the input data, or vector. This

is done by summing the squares of the input vector.

In this case it would be. (0.5 * 0.5) + (0.75 * 0.75).

This would result in a "vector length" of 0.8125. If

the length becomes too small, say less than the length

is set to that same arbitrarily small value. In this case

the "vector length" is a sufficiently large number.

Using this length we can now determine the

normalization factor. The normalization factor is the

reciprocal of the square root of the length. For our

value the normalization factor is calculated as

follows,
8125.0

1
 and this results in a

normalization factor of 1.1094. This normalization

process will be used in the next step where the output

layer is calculated.

6.5. Calculating each neuron’s output

To calculate the output the input vector and

neuron connection weights must both be considered.

First the "dot product" of the input neurons and their

connection weights must be calculated. To calculate

the dot product between two vectors you must

multiply each of the elements in the two vectors. We

will now examine how this is done.

The Kohonen algorithm specifies that we must

take the dot product of the input vector and the

weights between the input neurons and the output

neurons. The result of this is as follows.

)2.0*1.0()75.0*5.0(2.01.075.05.0 +=•

As we can see from the above calculation the dot

product would be 0.395. This calculation will be

performed for the first output neuron. This

Bengali

 156

calculation will have to be done for each of the

output neurons. Through this example we will only

examine the calculations for the first output neuron.

The calculations necessary for the second output

neuron are calculated in the same way.

This output must now be normalized by

multiplying it by the normalization factor that was

determined in the previous step. We must now

multiply the dot product of 0.395 by the

normalization factor of 1.1094. This results in an

output of 0.438213. Now that the output has been

calculated and normalized it must be mapped to a

bipolar number.

6.6. Mapping to bipolar

In the bipolar system the binary zero maps to -1

and the binary remains a 1. Because the input to the

neural network normalized to this range we must

perform a similar normalization to the output of the

neurons. To make this mapping we add one and

divide the result in half. For the output of 0.438213

this would result in a final output of 0.7191065.

The value 0.7191065 is the output of the first

neuron. This value will be compared with the outputs

of the other neuron. By comparing these values we

can determine a "winning" neuron.

6.7. Choosing a winner

We have seen how to calculate the value for the

first output neuron. If we are to determine a winning

output neuron we must also calculate the value for

the second output neuron. We will now quickly

review the process to calculate the second neuron.

For a more detailed description you should refer to

the previous section.

The second output neuron will use exactly the

same normalization factor as was used to calculate

the first output neuron. As you recall from the

previous section the normalization factor is 1.1094.

If we apply the dot product for the weights of the

second output neuron and the input vector we get a

value of 0.45. This value is multiplied by the

normalization factor of 1.1094 to give the value of

0.0465948. We can now calculate the final output for

neuron 2 by converting the output of 0.0465948 to

bipolar yields 0.49923.

As we can see we now have an output value for

each of the neurons. The first neuron has an output

value of 0.7191065 and the second neuron has an

output value of 0.49923. To choose the winning

neuron we choose the output that has the largest

output value. In this case the winning neuron is the

first output neuron with an output of 0.7191065,

which beats neuron two's output of 0.49923.

We have now seen how the output of the

Kohonen neural network was derived. As we can see

the weights between the input and output neurons

determine this output.

6.8. Learning algorithm flowchart

Figure 14: Learning Algorithm Flowchart

Working Papers 2004-2007

 157

6.9. Kohonen network learning procedure

The training process for the Kohonen neural

network is competitive. For each training set one

neuron will "win". This winning neuron will have its

weight adjusted so that it will react even more

strongly to the input the next time. As different

neurons win for different patterns, their ability to

recognize that particular pattern will be increased.

We will first examine the overall process

involving training the Kohonen neural network.

6.10. Learning rate

The learning rate is a constant that will be used

by the learning algorithm. The learning rate must be

a positive number less than 1. Typically the learning

rate is a number such as .4 or .5. In the following

section the learning rate will be specified by the

symbol alpha.

Generally setting the learning rate to a larger

value will cause the training to progress faster.

Though setting the learning rate to too large a

number could cause the network to never converge.

This is because the oscillations of the weight vectors

will be too great for the classification patterns to ever

emerge. Another technique is to start with a relatively

high learning rate and decrease this rate as training

progresses. This allows initial rapid training of the

neural network that will be "fine tuned" as training

progresses. The learning rate is just a variable that is

used as part of the algorithm used to adjust the

weights of the neurons.

6.11. Adjusting weight

The entire memory of the Kohonen neural

network is stored inside of the weighted connections

between the input and output layer. The weights are

adjusted in each epoch. An epoch occurs when

training data is presented to the Kohonen neural

network and the weights are adjusted based on the

results of this item of training data. The adjustments

to the weights should produce a network that will

yield more favorable results the next time the same

training data is presented. Epochs continue as more

and more data is presented to the network and the

weights are adjusted.

Eventually the return on these weight

adjustments will diminish to the point that it is no

longer valuable to continue with this particular set of

weights. When this happens the entire weight matrix

is reset to new random values. This forms a new

cycle. The final weight matrix that will be used will

be the best weight matrix determined from each of

the cycles. We will now examine how these weights

are transformed.

The original method for calculating the changes

to weights, which was proposed by Kohonen, is often

called the additive method. This method uses the

following equation,
axw

axw
w

t

t
t

+

+
=

+1
. The variable

x is the training vector that was presented to the

network. The variable w
t
 is the weight of the winning

neuron, and the variable w
t+1

 is the new weight. The

double vertical bars represent the vector length.

The additive method generally works well for

Kohonen neural networks. Though in cases where the

additive method shows excessive instability, and fails

to converge, an alternate method can be used. This

method is called the subtractive method. The

subtractive method uses the following equations.
twxe −= and aeww tt

+=
+1

. These two

equations show you the basic transformation that will

occur on the weights of the network.

6.12. Calculating the errors

Before we can understand how to calculate the

error for chronic neural network must first

understand what the error means. The coming neural

network is trained in an unsupervised fashion so the

definition of the error is somewhat different

involving the normally think of as an error.

The purpose of the Kohonen neural network is to

classify the input into several sets. The error for the

Kohonen neural network, therefore, must be able to

measure how well the network is classifying these

items.

6.13. Recognition with Kohonen network

So for a given pattern we can easily find out the

vector and can send it through the Kohonen Neural

Network. And for that particular pattern any one of

the neuron will be fired. As for all input pattern the

weight is normalized so the input pattern will be

calculated with the normalized weight. As a result the

fired neuron is the best answer for that particular

input pattern.

Bengali

 158

7. Functional Output

According to my system stated above, I

conducted a study on the accuracy level for different

input data. It is important because it is an identifier of

feasibility and efficiency. I consider both accuracy

rates and also some drawbacks respected to the

described Bangla Character Recognition process.

7.1. Accuracy rates

Table 8 shows some accuracy level for different

input data. The data is considered as trained

characters or words, untrained similar fonts

(solaiman lipi is the trained font and similar font is

dhanshiri), scanned documents are of solaiman lipi

fonts and lastly irregular shape fonts (some big or

small fonts).

Table 8: Accuracy rates corresponding to

different sectors

Character/words Accuracy rate

Trained 100%

Untrained similar fonts 99%

Scanned docs. 99%

Irregular font size 98%

7.2. Drawbacks

As I said we are at the preliminary level of the

Bangla Character Recognition so the main drawback

we can consider is we need to modify and make it

more accurate. Again like all other Neural Network

training time increase with the increase in number of

characters or words in Kohonen Neural Network.

Besides I defined fixed picture size 250 X 250. So it

will not work for different image documents. So it

needs to be more generalized. Finally the system

can’t work for small fonts. This is because; we need

to grab the pixels at first from the original image

documents. Then we need to map it. But in the case

of small Bangla fonted image it can’t grab the pixel

from original documents. So it creates problem for

recognizing small fonts.

8. Conclusion and Future Work

8.1. Conclusion

This report tries to emphasise on a way or

method of Bangla character recognition in the

simplest possible manner. But there are lots of ways

to implement it that could be more efficient than

Kohonen Neural Network. But successfully the

research comes to an end. And at the conclusion I

can quote that there is a huge area to research on

Bangla Character and its recognition procedure.

8.2. Future work

I stated above that there is a vast area of research

on Bangla Character Recognition. Complex character

based language like Bangla needs deep research to

meet its goal. Number of input neuron in my system

is quite high. It can be reduced by segmenting

character. But inaccuracy is palpable in segmentation

of Bangla character. So efficient system is still far

away. We can think about the basic characteristics of

Bangla character and those characters can be

grouped and then segmented. Thus the number of

input neuron can be reduced. And also Kohonen

Network is used based on the feature of each Bangla

character.

9. References

[1] M.T. Hagan, H.B. Demuth and M. Beale, ?eural

?etwork Design, PWS Publishing Company, 1995.

[2] R.C. Gonzalez and R.E. Woods, Digital Image

Processing, second edition, Pearson Education, 2003

[3] J. Heaton, Introduction to ?eural ?etwork in

Java, HR publication, 2002

[4] N. Otsu, “A Threshold Selection Method from

Gray-Level Histograms”, IEEE Transactions on

Systems, Man, and Cybernetics, 1979.

[5] A.K. Jain and T. Taxt, Feature Extraction

Methods for Character Recognition - a survey,

Michigan State University, 1995

[6] N.A. Noor and S.M.M. Habib, “Bangla Optical

Character Recognition”, BRAC University, 2005

Working Papers 2004-2007

 159

[7] J.C. Perez, E. Vidal and L. Sanchez, “Simple and

Effective Feature Extraction for Optical Character

Recognition”, Selected papers from the 5th Spanish

Symposium on Pattern recognition and images

analysis, Valencia, Spain, 1994, pp. 60-71.

[8] Z. Lu, I. Bazzi and R. Schwartz, “A Robust,

Language-Independent OCR System”, Proc. 27th

AIPR Workshop: Advances in Computer-Assisted

Recognition SPIE Proceedings, 1999.

[9] J.U. Mahmud, M.F. Raihan and C.M. Rahman,

“A Complete OCR System for continuous Bengali

Character”

Appendix A

A.1. UML diagram for feature extraction

Here the main class is Bangla that contains GUI

of the system. It usually helps to take image as input.

Picture container actually contains the image and

image component helps to draw into Bangla GUI

pixel by pixel. Again the sample class used to sample

the input image. The class SampleData split the input

image pixel by pixel, normalize and modify it and

returns the sampled data.

Figure A.1: UML diagram for feature extraction

A.2. UML diagram for Kohonen network

This is a simple diagram for Kohonen Network.

Network is the actual design of the Kohonen

Network. Kohonen Network actually uses the

attributes of Network class. And the training

methodology is stands on the TrainingSet class.

Winning selection, normalizing, error detection,

analyzing is the part of TrainingSet class.

Figure A.2: UML diagram for Kohonen network

