
X input Method for Dzongkha Script 
 

Pema Geyleg 

Department of Information Technology 

pema.geyleg@gmail.com 

 

 

Abstract 
 

This paper documents the research conducted 

while creating Dzongkha keyboard file in XKB to have 

Dzongkha keyboard support in Linux operating 

system. Dzongkha Keyboard support means that the 

user should be able to use the normal English 

keyboard for inputting Unicode Dzongkha text. This 

means that an alternate keyboard layout be provided 

for inputting Dzongkha text. The user should be able 

to switch/toggle between different keyboard layouts by 

pressing some combination of keys like ALT+CTRL 

keys. 

It is to be mentioned that it was not possible to 

cover all the Dzongkha characters in a single 

keyboard layout as with English characters which 

have only two levels namely Normal state and Shift 

state. To overcome this, the Dzongkha keyboard has 

four levels where by each level displays different 

characters with each key press. The different four 

levels are, Normal state, Shift state, Right Alt state and 

Right Alt + Right Shift state. 

XKB is the X server’s keyboard module. XKB is a 

highly configurable module and its behavior is 

determined by a database of configuration files. These 

configuration files are read and compiled by the XKB 

module each time the X server starts. By modifying 

these configuration files, or adding new configuration 

files, we can effectively modify the X keyboard 

behavior to suit our requirements. 

 

1. Introduction 
 

The mechanism for keyboard input under the X 

window system is described below: 

The X server generates events when a key is 

pressed and when a key is released ie, a Keypress 

event  and a Keyrelease event. The Keyboard gets 

attached under X to the window or sub-window that 

has the focus. The X keyboard has two model namely, 

the server specific codes(called keycodes) and the 

server independent Symbols(called keysyms).The 

keycodes represent the physical keys that has to be 

mapped to ASCII characters before the can be used 

and the keysyms represents the letters or words that 

appear on the keys. 

   For a specific physical key the X server generates a 

particular keycode. The keycodes for each key are 

unique. For common alphanumeric keys the keycode 

generated maybe the same for many workstations but it 

is not guaranteed to be so. Therefore instead of using 

the raw keycode the application uses the meaningful 

characters that are translated by a two step process: 

• Firstly the keycodes are translated to 

symbolic names called keysyms.   

 

• In the second step the keysyms are converted 

to an ASCII text string which    is used to 

display and save in files and buffers.   

The translation of keycodes to keysyms is managed 

by the X server. Users maybe are able to alter the 

mapping of one or more keys with utilities such as the 

“xmodmap”. A secondary mapping in the form of 

keymap tables may also be used to convert the 

keycodes to keysyms by the client at the application 

level. 

Keyboard mapping in Linux is handled differently 

for the two modes in which the system can run: 

1. Terminal mode. 

2. X window system mode. 

In terminal mode, the keyboard mapping (i.e. 

conversion from scan-codes to character codes) is 

handled by the Linux keyboard driver, whereas in X 

modes, it is handled by the X server. Both these 

mappings are implemented by maintaining a mapping 

table. There are utilities available which allow a user 

to write his own mapping table (in a particular syntax), 

these mappings can be then loaded dynamically into 

the system. This is achieved using X keyboard 

Extension (XKB) and using Xmodmap mechanism. 

Four Levels of Dzongkha keyboard layout is shown 

diagrammatically below: 

 



Working Papers 2004-2007 

 211 

 
 

                                                    
                                       

Figure 1: Dzongkha Keyboard Layout 

 

These four levels are listed below: 

1. SHIFT State 

2. Right ALT State 

3. SHIFT + Right ALT State 

4. Normal State  

        

This Dzongkha keyboard layout has been prepared 

at DDA (Dzongkha development authority) while 

implementing Dzongkha computing capabilities in 

Microsoft Windows operating system. 

  However the information on creating the XKB files is 

only available through the internet. The Xmodmap lets 

you gain complete control of the keyboard. It is a little 

hackers’ solution. You can map the keyboard to almost 

anything but this method is discoursged nowadays. 

The only alternative was to create a dzongkha XKB 

file. 

2. Methods 
 

2.1. XKB Configuration Files 
 

It is a tedious to work through the XKB 

configuration files. The configuration files are already 

present, prepackaged and adequate. In the 

subdirectories keycodes, types, compact, symbols and 

geometry corresponding to the components of the 

same name, the main files are present. There are ways 

to group the main components together into neat 

bundles. These are held inside the keymap, rules and 

semantics subdirectories. 

 

2.2. The Basics 
 

Following the basic idea that you can adopt a mix-

and-match approach to building a keyboard 

configuration, the XKB configuration has been 

decomposed into a number of components. There are 

sophisticated inclusion and augmentation rules that 

help to build a component from a basivc set-up and a 

number of modifications for odd keyboard layouts and 

national peculiarities. These components are: 

 
2.2.1. Key codes  

 

The keycodes does the translation of scan codes 

from the keyboard into a suitable symbolic form. At 

the very bottom of the XKB food chain lays the key 

codes. The X system generates a key press event and a 

key release event. This event generates raw numeric 

keycodes to indicate that a key has been pressed or 

released. 

In both these events, the keycode generated 

indicates whether a key has been pressed or released. 

These keycodes components of the XKB assign 

symbolic names to the various keycodes. 

    The symbolic names are then used to look up 

similar keyboard layouts in the symbols component. 

Below is given something of the structure of a basic 

keycodes map: 

 

    

 



Dzongkha 

 212 

xkb_keycodes "basic" { 

minimum= 8; 

maximum= 255; 

<TLDE> = 49; 

<AE01> = 10; 

<AE02> = 11; 

... 

indicator 1 = "Caps Lock"; 

indicator 2 = "Num Lock"; 

... 

alias <AE00> = <TLDE>; 

}; 

 

 

   The “basic” XKB keycodes gives the component 

type (keycode map) and the variant name (basic). The 

maximum and the minimum lines after that indicate the 

maximum and the minimum keycodes generated by the 

keyboard. It is not a problem if not all the keycodes 

are used. 

Then there are lines like <AE01> = 49; which 

indicates that keybord keycode (49 in this case) is 

mapped unto a symbolic keyname (<AE01> in this 

case). The line here associated a keycode with name 

that will be used in components such as the symbols 

component. 

The convention that is being used here explicitly 

names escape-like and shift keys, but names ordinary 

keycodes by positional code. Therefore, <AE01> is 

infact 1/! Key on an ordinary QWERTY keyboard. 

 

It is shown in detail below: 

 

 
Figure 2: PFU-QWERTY 

 
The left shift key is however denoted by <LFSH>. 

This convention is used so that the Dvorak-like 

keyboards can be sensibly specified. The keyboard 

codes are based notationally on a conventional 

QWERTY keyboard. 

 

Alternate names can be associated with the same 

key. This is specified by lines like <AE00> = 

<TLDE>; shown above. The tilde key associated with 

keycode 49 in the example above can also be reffered 

to as <AE00> and also as <TLDE>. This is useful as 

sometimes you would want to refer to “the right most 

key of the top row” rather than “the tilde key”. 

In the above example, lines like indicator 1 = “caps 

Lock”; enumerate the indicator LEDs that the 

keyboard has. From what i think, the name of the 

indicator is important rather than the number, as it is 

reffered to in other components like the compact 

component. It is possible that the numbering of the 

indicators in the keyboards hardware is reffered to by 

the indices. This interpretation has the problem that it 

violates the symbolic = concrete formulation used in 

the rest of the file. 

 

2.2.2. Key symbols 

 

     Pressing a key would produce the actual characters 

or glyphs ie, the Key Symbols. Symbolic keycodes are 

mapped unto appropriate symbol by a Symbols map.  

Every symbol has a name which is defined as part 

of the X protocol with a few extra added by the XKB. 

As far as i can see, the actual symbols name are taken 

from the /usr/X11R6/includes/keysymdefh file. 

The names are listed in this list with the initial XK_ 

stripped off. For example the name of a simple symbol 

such as the 'a' is 'a'. Complex symbols such as the B, 

has names spelt out as the ssharp. A number of odd 

key symbols are also spelt out according to the XKB 

protocol specification. Groups and levels can alter the 

meaning of keys on the keyboard.Therefore, the 

Symbol map is similar to a matrix which lists multiple 

symblos for each key. Also the groups and level are 

used to look up the appropirate symbol. 

Below is given something of a symbol map file: 

 

partial alphanumeric_keys 

xkb_symbols "basic" { 

name[Group1]= "US/ASCII"; 

key <ESC> { [ Escape ] }; 

... 

key <TLDE> { [ quoteleft, asciitilde ] }; 

key <AE01> { [ 1, exclam ] }; 

... 

modifier_map Shift { Shift_L, Shift_R }; 

... 

}; 

 

 
The first line, partial of default alphanumeric keys 

xkb symbols “basic” indicates that this is a symbol 

map called basic, along with a few options. The partial 

option is there to indicate that the map doesnot cover 



Working Papers 2004-2007 

 213 

complete keyboard, only some intresting section of it. 

The alphanumeric keys option indicates the section of 

the keyboard that is being covered. The Multiple * 

keys options are allowed and if any of them has not 

been specified, it is assumed that the map covers a 

complete keyboard.   

   The line name [Group1] = “US/ASCII”; allocates a 

name to one of the keyboard groups. Other groups can 

also be specified like wise but a different group name 

has to be given. 

    The statement key <TLDE> {[ quoteleft, asciitilde 

]}; indicates a single mapping to a group of symbols 

(“and” in this case) from a key code (<TLDE> in this 

case). 

If a pair of symbols is enclosed in brackets, it 

shows that the pair of symbols is seperated by a shift 

level. Pressing the Shift key would then shift between 

the two levels, but the types components can overide 

this. If instead a single symbol is enclosed within 

brackets, then this symbol is always used independent 

of the shift level. 

The keycode {[symbol,symbol]} is short form 

syntax of a more general one that allows for a more 

flexible specification. It is also possible to use inside 

braces the syntax group [groupname] = 

[symbol,symbol] instead, with different statements 

being seperated by commas. This syntax is needed 

when extra information is being specified for the keys 

such as the type information. 

 

2.2.3. Compatibility map 

 

The “compatibility map” is usually called the 

compact component in short. It seems a rather odd 

name for a component which is mostly concerned with 

translation of certain key combinations into actions, 

rather than symbols. 

The compact component intercepts certain 

combinations of keys, usually modifier keys of various 

sorts. These keys are converted into different actions 

that range from changing the internal state of the XKB 

(for example, selecting current group) to moving the 

mouse pointer. These key strokes are usually 

consumed by the compatibility map and disappear, 

even though they can be passed on to other 

components or to the outside world. 

The Compatibility maps also controls the different 

indicator lights that are displayed. Many Compatibility 

maps have handling of the modifier keys as a major 

part. These keys have to be translated into concrete 

actions-- group and level shifts, etc-- and also locked 

or latched. Only when it is being held down, a normal 

(unlocked, unlatched) modifier key has an effect. 

A locked modifier key where as, is on until other 

keypress releases it. Until another key is pressed, a 

latched modifier key is kept on, at which point the 

modifier is released. The table below lists various 

actions in the compatibility map. 

 
Figure 3: Actions in Compatibility Map 

 

2.2.4. Types 

 

Types give information regarding the levels 

available for various keys and describe how to shift 

between the levels. 

Each key has its own type and has different number 

of levels and different ways of switching between these 

levels; For example when Caps Lock key is on, only 

alphabetic characters are shifted. 

      The type a key has can be either being given 

explicitly in symbols component or is assigned 

automatically. The follwing rules apply if a type has 

not been explicitly specified. 

 

• If only one symbol is listed for the key, the 

type then is ONE LEVEL and there are no 

level changes. 



Dzongkha 

 214 

• The type is ALPHABETC if level 1 symbol is 

a lower-case letter and level 2 symbols is an 

upper-case letter. In this case the levels are 

changed by either the Shift or Caps Lock key. 

• The type is KEYPAD if there is a keypad 

symbol on any level. Here either the Shift or 

Num Lock key changes levels. 

• Otherwise, it is of type TWO LEVEL and the 

Shift key changes the levels. 

 

Following gives an example type's component:  

 

partial default xkb_types "default" { 

virtual_modifiers LevelThree; 

 

type "THREE_LEVEL" { 

modifiers = Shift+LevelThree; 

map[None] = Level1; 

map[Shift] = Level2; 

map[LevelThree] = Level3; 

map[Shift+LevelThree] = Level3; 

level_name[Level1] = "Base"; 

level_name[Level2] = "Shift"; 

level_name[Level3] = "Level3"; 

}; 

}; 

 
The line virtual modifiers LevelThree; indicates 

that the virtual modifiers are to be used. These are 

modifiers that have an equivalent virtualMods = 

LevelThree somewhere in the symbols component or 

somewhere in the compact component. The standard 

shift modifiers need not be specified. 

The line modifiers = Shift + LevelThree; assigns 

the set of modifiers that are to be considered for this 

particular type. 

The line map[Shift] = Level2; describes that level 2 

is to be used whenever shift key is down. 

The level name[level2] = “Shift”; line are those 

that assigns suitable names to each level. These are 

useful when you want to do things like printing out key 

maps. Besides that they do not have any direct effect 

on any thing. 

 
2.2.5. Geometry 

 

Geometry describes the physical layout of a 

keyboard. There exist a number of other components 

such as rules, semantics, keymaps that are essentially 

ways that packages the main components into more 

usable collections. 

However, the geometry files are some of the most 

complex for something that is so trivial. Below is 

given a sample file: 

 

default xkb_geometry "pc101" { 

description= "Generic 101"; 

width= 470; 

height= 210; 

... 

shape.cornerRadius= 1; 

... 

shape "NORM" { { [ 18,18] }, { [2,1], [ 16,16] } }; 

... 

solid "LedPanel" { 

shape= "LEDS"; 

top= 52; 

left= 377; 

color= "grey10"; 

}; 

... 

indicator "NumLock" { left= 382; }; 

... 

 
   The line default xkb geometry “pc101” has the usual 

options ie, type and name declaration. The line 

description = “Generic 101”; assigns a descriptive 

name to the keyboard.  

     The total width of the keyboard is given by the line 

width=470;. All of the lengths in geometry 

declarations are multiples of 1mm, therefore 470 is 

47cm. The shape.cornerRadius = 1; line indicates 

default setting for a shape field. Here in this case, the 

corner radius of a join is set to 1mm. Listed below are 

other items such as solids that have other fields. 

The line shape “NORM” {{[ 18,18]}, {[12,1]}, 

{[16,16]}}; declares a shape. A shape can be used to 

draw something like a key or indicator. It is a named 

drawing outline. 

This shape above defines the look of a normal key. 

All of the coordinates are starting from the upper left 

corner and increases rightwards and downwards. The 

position of the shape is shifted wherever the shape 

needs to be drawn from the origin of the shape which i 

always (0,0). A Shape consists of list of outlines and 

each one represents a closed figure. By outline, it 

means a list of coordinates in [x,y] form with each list 

enclosed in braces. 

An outline interpretation depends on the number of 

coordinates in the list. If only one coordinate is given, 

the box is drawn from origin (0,0) to that coordinate. If 

two are given in the list, then the box is drawn from 

the first to the second coordinate. If three or more are 

given in the list, then an arbitary closed figure is drawn 



Working Papers 2004-2007 

 215 

with vertex at each coordinate. In the above example, a 

box is drawn from (0,0) to (18,18). Another from (2,1) 

to (16,16) to give a suitable looking key outline.  

   From above, the section beginning with solid 

“Ledpanel” draws a solid area of color. A solid serves 

as an example of a doodad; which is a piece of 

decoration for filling out the appearance of the 

keyboard. Other example of doodads are indicators, 

outlines, text and logos. The fields of the solid are left 

and top, shape and color. lLeft and top gives the start 

position of the solid. Shape gives a named shape for 

the solid to draw. Color gives the color of the solid. 

which can be any of the named X11 colors.The field 

priorty assigns the drawing order for overlaid items. 

The line indicator "NumLock" {left= 382 ;}; 

declares a suitably named doodad. For an indicator the 

possible fields are: onColor, offColor, left, top, 

priority and shape. I am not sure entirely about how an 

indicator gets mapped onto an appropirate logical 

indicator from the compact or the keycode 

components. It could be related to the numbering of 

the indicators. 

 

2.2.6. Modifier keys 

 

The modifier keys are those keys that are used to 

change the meaning of  other keys. Examples include 

the Shift, Control or Alt key. The can also be 

combined to give combinations like the 

Control+Shift+Alt. This handling of extended modifier 

key combinations is what makes the XKB, to a certain 

extend  so complex.  

XKB recognizes eight modifier keys at the base 

level namely, Control, Shift and Lock keys and the 

generic Mod1-Mod5 keys. These keys correspond to 

the keys in the core X protocol. It needs to be there so 

that the older programs can understand whats going 

on. Keys such as the ubiquitous Alt keys are mapped 

onto one of the Mod keys. Its all well to have the basic 

modifier keys but it would also be handy to be able to 

introduce a level of abstraction. In this way you would 

be able to talk about the modifier keys by function 

rather than by explicit keyname. With XKB virtual 

modifier keys can also be used where a basic modifier 

key or combinations is mapped onto a named virtual 

modifier. The behavior of the keyboard is described by 

the virtual modifiers, decoupling the exact physical 

capabilities of the keyboard you are using from the 

sort of characters that you want to type. This side of 

things are largely handeled by the compact 

components. 

 

An example is shown below. 

 

key <RALT> { 

symbols[Group1]=  

[Mode_switch, Multi_key ], 

virtualMods= AltGr 

}; 

 
2.2.7. Levels and Groups 

 

A level stands for the sort of things that a Shift key 

is normally expected to do. Normally, you would 

expect an 'a' character to appear when the key marked 

'A' is pressed and 'A' character to appear instead when 

you hold down the Shift key and press the same key. 

Normally the two levels, Shift and non Shifted are 

enough. The fairly standard way of shifting between 

levels is to press the Shift or the Lock keys.This nice 

state of affairs is complicated by keys such as the  

Return key and keys that often have more complex 

levels such as numeric keypad. 

Groups are more slippery concept in contrast to 

levels that are staraightforward. With groups you can 

shift the entire keyboard over to some other character 

set. This way you would be able to access characters 

which are not usually considered part of the standard 

keyboard.  

To shift groups the keys needed are less obvious 

than the keys needed shift levels because there isn't 

any immediate equivalent to the shift key and the Alt 

key is assigned other duties. It is upto the user to 

choose from the number of possible combinations that 

the standard XKB configuration files. There are 

multiple levels inside each groups with each level 

reflecting the suitable shifts for the characters in the 

groups. 

There are also upto 64 Shift-Levels for each group. 

Normally two are used: level for un-shifted keys and 

the second one: shifted keys. In Dzongkha keyboard 

layout up to four levels are used. 

 

     
 

Figure 4: Levels and Groups on a single key 

 

 



Dzongkha 

 216 

2.2.8.   Handling groups 

 

By including other list of symbols after the first list, 

Multiple groups can be specified. Each of these list are 

seperated by commas. Each group has to be named and 

below is shown what the resulting configuration should 

look like. 

 

   name[Group1]=”US/ASCII”; 

   name[Group2]=”Dzongkha”; 

   ……. 

   Key <AD01> {[q, Q], [U0F40, U0F92]}; 

 
Two groups are defined in this case. Here for the Q 

key, two lists of symbols are given. One list is for the 

US/ASCII group and the other for the Dzongkha 

group. There are also possibilities to specify multiple 

groups using the long form syntax as shown below. 

 

Key <AE11> { 

symbols[Group1]=[ minus , underscore ], 

symbols[Group2]=[ minus , questiondown ] 

}; 

 

It is also possible that a partial symbol map that 

only provides mappings for some higher, non default 

group may be defined. The symbol mappings for the 

lower level groups are empty in this case. These sort of 

symbol maps can also be included with more basic 

maps. For example the line below defines a group 3 

(only) Mapping. 

 

      Key <AD01> {[],[],[q,Q]}; 

 

2.2.9. Handling Levels 

 

 

     It is the types component that specifies how 

differing levels are to be handeled for various keys. It 

would appear that by default, most keys are 

automatically given a two level or alphabetic type. 

However, in some cases, it may be necessary to 

explicitly associate a level behavior with a key. Here 

the type and the symbol map needs to explicitly given. 

Below is an example: 

 

key <PRSC> { 

type= "PC_SYSRQ", 

symbols[Group1]= [ Print, Sys_Req ] 

}; 

 

From the above example, it is shown that the <PRSC> 

keycode is given an explicit type (PC SYSRQ). The 

group 1 symbols then are given explicitly using the 

long syntax. 

 
2.2.10. Control Keys 

 

Generally, a low value control key character is 

expected to be produced by holding the Control key 

down and typing and alphabetic key. For example, 

ASCII 8 is produced by Control H. The information 

about which keys produce which control characters are 

hard wired and specified in the XKB protocol. Which 

are the control keys are specified by using the modifier 

map statement to map keys onto the Control modifier. 

Below is given an example. 

 

modifier_map Control { Control_L }; 
 

2.2.11. Special Characters 

 

There are huge array of “symbols” that are 

intended to be used instead to control various parts of 

the XKB or the X11. The modifier keys discussed 

above are the most obivious. I addition to that there 

exists a range of symbols designed to do things like 

launch a web browser or be combined with other 

symbols. The character codes are present for all of 

these symbols. 

 

2.2.12. Dead keys 

 

The dead keys are keys that are intended to 

represent accents which are combined with other 

symbols to form an accented symbol. For example, the 

keyname’ key and the a key can be combined to form 

the á symbol. Nothing immediately appears when a 

dead key is pressed. An XKB will instead wait for the 

next character and will attempt to combine it with the 

accent. Names like the dead_acute are given to dead 

keys. 

 

2.2.13. ISO keys 

 
There are a grab-bag of features provided by the 

ISO keys: keys for shifting group and level, for setting 

word processor like features (such as margins) and for 

moving about the screen. An ISO prefix is given to all 

of these keys. 

 
X11 Control keys 

 

Here the control keys to terminate the X server and 

keys to flip between virtual screens are included. 

 
2.2.14. XKB Control keys 



Working Papers 2004-2007 

 217 

 

    For ease of use, the XKB provides a number of 

facilities: options to handle slow typing, 

key repeat, sticky keys and using keys to move the 

mouse pointer. There are also pseudo-keys such as 

Mode_shift that are not intended to actually produce 

symbols in addition. 

Give the research methodology there. Methods 

present all the details of the study methodology, e.g. 

the subject, research design, statistics etc. 

These are the keys that the compact component 

consumes to produce actions. 

 
2.2.15. Composition keys 

 

The accented characters and the like can be build 

by using the Multi_key key. It is produced by pressing 

the Multi_key key, followed by the letter, followed by 

the accent character. 

 The list of compose sequence for a particular 

locale or encoding (iso8859-2 for example) and what 

the produce is contained within the 

/usr/X11R6/lib/X11/locale/localename/Compose. 

 

2.3. XKB Programs 

 
A number of programs are there which come with 

XKB for management and debugging purposes. All of 

these have adequate man pages and have a sensible –

help option. I’ll just be metioning a few things that 

may be useful here. 

 

2.3.1. Setxkbmap  

 

The Setxkb map program allows an XKB map to be 

installed. The Components can be directly specified 

through arguments such as –symbols en 

US(pc104)+Dz or by using the rules parameter. 

 

2.3.2. Xkbcomp 

 

The Xkbcomp compile an XKB keyboard description. 

This is the program that converts the contents of a 

suitably specified set of configuration files into a 

suitable form for the X-server to use. 

The intresting thing about this program is that it can 

also be used to produce a source file for the current 

XKB configuration, using the –xkb configuration. To 

give an example, command xkbcomp: 0.0 -xkb will 

produce a file called server-0 0.xkb that contains the 

complete configuration source for server 0.0. 

 

2.3.3. Xkbprint  

 

The Xkbprint produces a graphical map of the 

keyboard.  The map shows the keys for each character 

and is usually a Postscript map of the keyboard. For 

example a command such as xkbprint:0.0 will produce 

a file called server-0.0.ps with the map of the basic 

keyboard. To allow things such as the scan codes or 

key names to be printed, options such as the –label 

type is used instead. 

 

3. Results 

 
3.1. Dzongkha XKB file named dz 

 
partial default alphanumeric_keys 
xkb_symbols "basic" { 
      name[Group1]= "Dzongkha"; //consists of 
1 group only 
 
      key <TLDE> { [      0x1000F09, 
0x1000F0A, 0x1000F6C, 0x1000F6D ] }; 
       
// numbers e.a. 
      key <AE01> { [      0x1000F21, 
0x1000F04, 1, exclam ] }; 
      key <AE02> { [      0x1000F22, 
0x1000F05, 2, at     ] }; 
      key <AE03> { [      0x1000F23, 
0x1000F06, 3, numbersign ] }; 
      key <AE04> { [      0x1000F24, 
0x1000F48 , 4, dollar  ] }; 
      key <AE05> { [      0x1000F25, 
0x1000F70 , 5, percent ] }; 
      key <AE06> { [      0x1000F26, 
0x1000F08, 6, 0x1000F01 ] }; 
      key <AE07> { [      0x1000F27, 
0x1000F38, 7, ampersand ] }; 
      key <AE08> { [      0x1000F28, 
0x1000F34, 8, asterisk ] }; 
      key <AE09> { [      0x1000F29, 
0x1000F3C, 9, parenleft ] }; 
      key <AE10> { [      0x1000F20, 
0x1000F3D, 0, parenright ] }; 
      key <AE11> { [      0x1000F14, 
0x1000F7F, minus, underscore ] }; 
      key <AE12> { [      0x1000F0D, 
0x1000F11, equal, plus ] }; 
 
// consonants ( ka kha ga nga ) 
      key <AD01> { [      0x1000F40, 
0x1000F90, 0x1000F88, reserved  ] }; 
      key <AD02> { [      0x1000F41, 
0x1000F91, 0x1000F89, reserved  ] }; 
      key <AD03> { [      0x1000F42, 
0x1000F92, 0x1000F6E , 0x1000F6F]  }; 
      key <AD04> { [      0x1000F44, 
0x1000F94, 0x1000F83, 0x1000F82  ] }; 
 
// vowels ( i u e o ) 
      key <AD05> { [      0x1000F72, 
0x1000F80, 0x1000F1A, reserved  ] }; 
      key <AD06> { [      0x1000F74, 
0x1000F84, 0x1000F1B, reserved  ] }; 



Dzongkha 

 218 

      key <AD07> { [      0x1000F7A, 
0x1000F7B, 0x1000F1C, reserved ] }; 
      key <AD08> { [      0x1000F7C, 
0x1000F7D, 0x1000F1D, 0x1000F17  ] }; 
 
// consonants ( ca cha ja nya ) 
      key <AD09> { [      0x1000F45, 
0x1000F95, 0x1000F1E, 0x1000F18   ] }; 
      key <AD10> { [      0x1000F46, 
0x1000F96, 0x1000F1F, 0x1000F19   ] }; 
      key <AD11> { [      0x1000F47, 
0x1000F97, 0x100005B, 0x1000F3E ] }; 
      key <AD12> { [      0x1000F49, 
0x1000F99, 0x100005D, 0x1000F3F  ] }; 
 
// consonants ( ta tha da na pa pha ba ma tsa 
tsha dza wa ) 
      key <AC01> { [      0x1000F4F, 
0x1000F9F, 0x1000F4A, 0x1000F9A ] }; 
      key <AC02> { [      0x1000F50, 
0x1000FA0, 0x1000F4B, 0x1000F9B ] }; 
      key <AC03> { [      0x1000F51, 
0x1000FA1, 0x1000F4C, 0x1000F9C ] }; 
      key <AC04> { [      0x1000F53, 
0x1000FA3, 0x1000F4E, 0x1000F9E ] }; 
      key <AC05> { [      0x1000F54, 
0x1000FA4, 0x1002039, 0x10000AB ] }; 
      key <AC06> { [      0x1000F55, 
0x1000FA5, 0x100203A, 0x10000BB ] }; 
      key <AC07> { [      0x1000F56, 
0x1000FA6, 0x1000F37, 0x1000F35 ] }; 
      key <AC08> { [      0x1000F58, 
0x1000FA8, 0x1000F7E, reserved ] }; 
      key <AC09> { [      0x1000F59, 
0x1000FA9, 0x1000F39, reserved ] }; 
      key <AC10> { [      0x1000F5A, 
0x1000FAA, 0x100003B, 0x100003A ] }; 
      key <AC11> { [      0x1000F5B, 
0x1000FAB, apostrophe, quotedbl ] }; 
       
// TODO: BKSL and LSGT are from gb layout, 
are there any variants? 
      key <BKSL> { [      0x1000F5D, 
0x1000FAD, 0x100005C, 0x1000FBA ] }; 
      key <LSGT> { [      0x1000F0D, 
0x1000F11, 0x1000F10, 0x1000F0F ] }; 
 
// consonants ( zha za 'a ya ra la sha sa ha 
a ) 
      key <AB01> { [      0x1000F5E, 
0x1000FAE, 0x1000F13, 0x1000F36 ] }; 
      key <AB02> { [      0x1000F5F, 
0x1000FAF, 0x1000FBE, 0x1000FBF ] }; 
      key <AB03> { [      0x1000F60, 
0x1000F71, 0x1000F03, 0x1000FB0 ] }; 
      key <AB04> { [      0x1000F61, 
0x1000FB1, 0x1000F12, 0x1000FBB ] }; 
      key <AB05> { [      0x1000F62, 
0x1000FB2, 0x1000F6A, 0x1000FBC ] }; 
      key <AB06> { [      0x1000F63, 
0x1000FB3, 0x1000F8A, 0x1000F8B ] }; 
      key <AB07> { [      0x1000F64, 
0x1000FB4, 0x1000F65, 0x1000FB5 ] }; 
      key <AB08> { [      0x1000F66, 
0x1000FB6, comma, less ] }; 
      key <AB09> { [      0x1000F67, 
0x1000FB7, period, greater ] }; 
      key <AB10> { [      0x1000F68, 
0x1000FB8, slash, question ] }; 
 
// space 
      key <SPCE> { [ 0x1000F0B, space, 
0x1000F0C, 0x10000A0 ] }; 

//to enable Right Alt key to access the 3rd 
level  
     include "level3(ralt_switch_multikey)" 

}; 

 

Character set used in Dzongkha script is the same 

as that has been assigned for Tibetan script within the 

U0F00 – U0FCF Unicode range. It is depicted 

diagrammatically in Appendix A. 

 

Results section presents the results of the study in a 

form which conveys their meaning.  Consider the best 

way of presentation.  You may use figures: figures 

should be self-explanatory with the corresponding 

caption; units, axes, and legends.  You may also use 

tables: tables should be self-explanatory with the 

corresponding caption; units, Word descriptions.  If 

the data results are large, only put a summary of the 

significant research finding in this section. 

 

4. Discussion 

 
The Dzongkha XKB file was successfully tested 

and is being used in the Linux operating system.  With 

the successful installation of Dzongkha keyboard and 

Dzongkha fonts in the Linux operating system, one 

will be able to type Dzongkha Unicode characters 

using “gedit” editor. However complex multi stacked 

characters cannot be rendered properly as we need a 

renderer for Dzongkha script. That is we need to have 

Pango module with Dzongkha script support to have 

proper rendering in Gnome application and ICU layout 

engine defined for Dzongkha script to properly render 

Dzongkha characters in Open Office application.  

We are in the later stage of development 

concerning the creation of Pango module support for 

Dzongkha script.  It can be said that we have 

successfully developed a Pango support for Dzongkha 

script which is being tested in terms of its reliability 

with other   applications on Linux operating system. 

Studies are being conducted on developing Dzongkha 

Layout Engine for ICU along with the work of 

localizing Open office 1.1.1. 

   

5. Conclusion 
 

X input method for any language can be 

successfully created using X keyboard extension 

(XKB) and Xmodmap with the exception that their 

script is supported in Unicode. However most people 

discourage the use of Xmodmap method for creating 

keyboard support for one's language. Then it is to be 

noted that with the successful installation of fonts and 



Working Papers 2004-2007 

 219 

keyboard driver doesn't guarantee proper rendering of 

the complex scripts as explained above. 

 

Then there is another form of creating input 

method called IIIMF (Intranet Internet Input method) 

and it is out of scope of this research. This method has 

been carefully studied and it is to be implemented at 

Sherubtse College as a senior project for Computer 

students. 

 

6. References 

 
[1] T Karoonboonyanan. “Thai Input Method 

Implementations”, http://linux.thai.net/thep/th-

xim. 

 

[2] I Pascal. “X Keyboard Extension” 

http://pascal.tsu.ru/en/xkb 

 

[3]  D Palmer. “Unreliable Guide to XKB” 

http://www.charvolant.org/~doug/xkb 

 


