
Detection and Correction of Homophonous Error Word for Khmer Language

Chea Sok Huor, Top Rithy, Ros Pich Hemy and Vann Navy

PAN Localization Team, Cambodia

csh007@gmail.com, toprithy@gmail.com, pichhemy@gmail.com

Abstract

The ability to detect and correct the written

error is a very crucial challenge for Khmer language

computing because of the fact that Khmer does not

separate words in its writing system. The richness of

Khmer characters confuses users to write a word in

many different ways. In this paper, we proposed a

method to detect the homophonous non-word error

using a Khmer Common Expression (in short KCE)

and automatically correct it. The idea is to generate

the same expression for every word that is likely to

be confused in sound. Therefore, the string to map

the word in the dictionary is not the real word string,

but an expression, which has the same pronunciation

as the target word.

1. Introduction

The detection and correction of errors for

Khmer language is a vital key for the development of

other NLP applications such as Information

Retrieval, machine translation, OCR, etc…Since

there is no obvious boundary in Khmer writing

system, it is clear that most errors in the text cause

abnormal segmentation. Consequently, if errors

exist, segmentation result can be weird. For example,

the segmentation of the word ₤еЮũş, which is the
incorrect word for ₤ЮŪĦş results two different
words ₤е-Юũş. To human perception, it is very easy
to judge that it is a one-word error due to its

pronunciation and context, but it is very difficult for

the computer to identify the fact.

The Khmer Common Expression (KCE) is

introduced. The expression is created to detect the

sound-similarity errors. The main idea to solve the

problem is to encode the misspelled word and the

dictionary word list into an expression that is based

on how it is pronounced. It means the string with the

same pronunciation has the same expression.

For example, the set of ₤еЮŲ₣, ₤ЮĦų₣, ₤еЮΌ₣
should be encoded into the same KCE.

Figure 1: KCE building using phonetic rules

2. Method

2.1. Khmer text writing error behavior

Generally, Spelling errors are grouped into two

types: non-word error and real word error. Real word

errors are those typographic errors that result in a

valid dictionary entry not intended by typist. For

example, typing “form” when “from” was intended.

Non-word errors are those error words that are

invalid in the dictionary. During the research, we

have assigned a group of people to type various

articles from the books and another group to do the

dictation. Here is our observation on the most

common non-word misspellings:

1. Around 70% percent of the error is due to the

phonetic similarity. This type of error occurs

under these circumstances:

- The users do not know how to write the

word so they write something which has the

same pronunciation to the targeted word.

For example, the confusion of writing the

word ₤еЮΌ₣ as ₤еЮŲ₣ or ₤ЮĦų₣

Khmer

 244

- The omission of the character ũ when it is

found at the end of the word, because

mostly, Khmer do not pronounce this

consonant when it is found at the end of the

word.

- Some various signs do not have any effect

in Khmer pronunciation so that it always is

omitted or confused in writing.

- Etc…

2. Around 10% of misspelling is due to the shape

similarity. For example, confusion of the

subscript of TA (˘ŉ) and the subscript of DA (˘Ś)
due to its similar shape

3. The rest is caused by the adjacent keys and

others.

2.2. Khmer homophone problem analysis

2.2.1. Khmer phonetic sets. The following list is

some of the homophonous sets that are extracted

from the Khmer Language Grammar book by Khin

Sok.

Table 1: Khmer homophone sets

Phone Homophone Set Example

[Ζ ӭ́
]

{[Β/Βп]+˘й, [Β/Βп] +
˘Љ₤с}

˝ĕųй, ˝Ĝų ₤с

[ЮΒ΅
]

{Ю˘й, Я˘й, Я˘₤} Ю˝й, Я˝й, Я˝₤

[ΒН΅] {˘Нй, ˘Н₤} řНй, řН₤
[ΒУ΅] {[Βп]+₤с,[Βп]+Ю˘вй,[Βп]+˘У

₤ }
Į₤с, Юĵй,

ũŲУ₤
[Ζп] {[Βп]+˘Љ, [Βп]+Ю˘Ь,

[Β]+Ю˘Ь }
Ĉĕ, Ю◦Ьĕ, ЮĳЬĕ

[ΒпНз] {[Βп]+˘Не, [Βп]+˘е} ◦Не, ◦е
[ΒпРŷ] {[Βп]+˘Рŷ, [Βп]+Ю˘д} Юĝ, ĕРŷ
[ΒпН₣] {[Βп]+₣с, [Βп]+˘Н₣} ˝еĮ₣с, ˝еĮН₣
[ΒпĀс] {[Βп]+Āс, [Βп]+˘НĀ} ŲĀс, ŲНĀ

In Khmer language, independent vowel is a

stand-alone character and has its own complete

sound. It needs no vowel or subscripts or various

sign. In writing, it is also one of the main causes for

misspelling. For instance, the word ι is usually
confused with the wrong word ũК due to the sound
similarity. The list below gives some similar

phonetic sets of some independent vowel.

Table 2: Independent vowels homophone sets

Phone Independent vowel Equal sound

[ΒЊ] Ο ΒЊ
[ΒН] Χ ΒН
[ΒРŷ] ΰ ΒРŷ
[ũЖ] ζ ũЖ
[ũК] ι ũК
[ŲЕ] µ ŲЕ
[ŲЙ] ο ŲЙ
[ЯΒ] υ ЯΒ
[ЮΖ] ό ЮΖ

2.2.2. Other phonetic set cases. Apart from the list

above, some other common homophonous

misspelling error is observed and listed:

1. The case of ũ: Normally, ũ is not pronounced
when it is found at the end of the words. For

example, the set of {ÐРũ, ÐР}
2. Since some various signs are not pronounced in

the word, they are likely to be forgotten during

the writing. These consists of: ˘ч, ˘э, ˘ґ, ˘с
3. The case of the consonant set {‗, ĕ} and {Ų,

Ό}: The two consonants are likely to be
confused when its previous syllable has the

sound [Β] A. For example, the confusion of
writing the word ₤е‗Уũ as ₤еĕУũ and the
confusion of the writing ₤еЮΌ₣ as ₤еЮŲ₣

2.2.3. Sound shifting issue. Fundamentally, Khmer

consonants are grouped into two main types of

Working Papers 2004-2007

 245

sound, [Β] (sound A) and [Βп] (sound O). The sound
type of the consonant and the subscript could affect

the sound of the syllable when they combine with the

vowel.

Taking as example of the Khmer vowel ˘Љ “a:”.

It is pronounced as “a:” when it is with the sound-A

consonant and “i:ə” when it is with the sound-O

consonant.

Example1:

˝ (Sound A) + ˘Љ � Ł
K + a: � ka:
But
Ð (Sound A) + ˘Љ � ý
K + a: � ki:ə

Example2:

₤(A) + ˘Ś (A) + ˘Љ � ⅜Ś
S + d + a: � sda:
But
₤(A) + ˘į(O) + ˘Љ � ⅜į
S + p + a: � spi:ə

There are many more issues left concerning the

sound shifting in the syllable. For more details,

please see the Khmer Language Grammar Book by

Khin Sok.

2.3. Erroneous word segmentation algorithm

Since there is no boundary between words in

Khmer writing system, there is no easy solution for

the task. Therefore, it is inevitable to take word

segmentation to be part of the research. We proposed

a word segmentation method that segments Khmer

text into combinations of characters, called Khmer

Character Cluster (in short KCC), and then merge

those KCCs in possible word segmentations. The

main advantage is that KCC is an inseparable unit

and well defined so that the boundary of KCC might

be the boundary of word also. This leads to a

decrease in the number of accesses to the dictionary

during the process of finding possible segmentations,

which is time consuming.

Figure 2: Flow chart of the system

Figure 2 above illustrates the main process of

the algorithm. First, the input sentence is converted

into a collection of KCCs. Then, KCC matching

module reads each KCC one by one from left to right

and match them. Then, it converts the KCCs into

KCE string. The KCE string is used to look up if it

exists or not in the dictionary. Therefore, multiple

possible segmentations of the input text are

generated. The disambiguation module will select

the best segmentation among those candidates.

2.4. Khmer Character Cluster (KCC)

Here, KCC is defined as a succession of

characters with an inseparable unit. Since KCC is

well defined, the boundary of the KCC might be the

boundary of Khmer word also. It means that, a

Khmer word is the combination of one or more

KCCs. Below is the examples of the KCC in Khmer

word:

- The word ⅜ŵ Ś̋Б is the combination of three
KCCs: ⅜ + ŵ + Ś̋Б

- The word şН˝ČĀс is the combination of four
KCCs: şН + ˝ + Č + Āс

Input sentence

Disambiguation

Output segmented sentence

KCC Segmentation:

Generate the KCCs

KCCs Matching:

Generate word

tokens

KCC Rules

KCE List

KCE Rules

Khmer

 246

<C|I> + [<Robat | Regshift>] + {COEUNG + <C +

[Regshift] | I + [Regshift]>} + [[<ZWJ|ZWNJ>] +

V] + {S} + [ZWJ + COEUNG + <C | I>]

- The word ū₤ŉБ is a one KCC word
The segmentation of text into KCC can be done

by detecting the transition state for each character of

the input string. If there is no possible transition of

any character, it means the end of KCC is reached.

The rule for forming KCC is given in terms of type

of characters.

The meanings of the symbols are:

Symbols Meaning

{} Zero to two occurrences

[] Zero to one occurrences

<x | y> The choice of x or y

C Consonant

I Independent vowel

COEUNG The COEUNG character (\u 17D2)

V Vowel

Regshift Registry shifter

S Various sign

ZWNJ ZERO WIDTH NON-JOINERS

ZWJ ZERO WIDTH JOINERS

ROBAT The Robat sign (\u 17CC)

2.5. Khmer Common Expression (KCE)

As stated, KCE is an expression created to make

Khmer strings with the same pronunciation similar.

Simple character-to-character mapping method could

not be applied here because there are many cases of

sound changes in Khmer pronunciation system.

Therefore, KCC, which is the combination of

Consonant, Robat, Subscripts, Consonant shifter,

Vowels, Various sign, Zero width Non-Joiner, Zero

width Joiner, is selected to be the fundamental

component for building the KCE. After the study on

the KCC structure and the problems listed above, we

have categorized three types of rule for building the

KCE. Each type of rule handles different blocks of

the KCC.

- Type 1: focuses on Consonant and ROBAT

block of the KCC

- Type 2: handles the subscript, consonant shifter

block

- Type 3: handles the Vowels, Various signs.

For each type of rule, there are two main parts:

matching rule and mapping rule. Matching rule is

used to identify if the KCCs matched to the KCE

rule or not. Mapping rule is used to map the original

KCCs into another string.

The main process is illustrated in Figure 3. The

system matches the input KCCs with all the rules in

each type of rule. Only one rule in each type of rule

could be matched. After getting the matched rules, it

will map the input KCCs to other string according to

the corresponding mapping rules. The string is called

KCE.

Figure 3: KCE building process

2.5.1. Matching rules. A matching rule is the

combination of one or more KCC matching rules,

which contains five main blocks.

The first block: is the consonant block. The value of

the block could be

o A consonant

o 0 : The sound of KCC is [Β] (Sound A)
o 1 : The sound of KCC is [Βп] (Sound O)
o 2 : The sound of the KCC is either [Β]
(Sound A) or [Βп] (Sound O)

The second-fifth block: The second block is the

subscript block, the third is consonant shifter block,

the fourth is the vowel block and the fifth is the

various sign block. The value of each block could

be:

Working Papers 2004-2007

 247

o The character of corresponding block, for

example, the vowel block should contain a

vowel.

o 0 : The current KCC must not have the

character of the corresponding block

o 1 : The current KCC must have at least one

character of the corresponding block

o 2 : The current KCC must either have the

character of the corresponding block or not

2.5.2. Mapping rules. A mapping rule is the

combination of one or more KCC mapping rules,

which contains five main blocks, the consonant

block, subscript block, consonant shifter block,

vowel block, and various sign block. The value of

each block could be:

o The mapping character of the corresponding

block, for example, the vowel block should

contain a vowel.

o 0 : The mapping character is the same as the

matching character

o 1: There is no mapping character.

Example: Given rules set as below

1. Type 1 rule: 0,2,2,2,2;Ό,2,2,2,2=0,0,0,0,0;Ų,0,0,0,0

2. Type 3 rule: 0,2,2,0,˘е=0,0,0,0,Ħ
The first rule means that the consonant Ό could

be replaced by Ų when the sound of the first KCC is
[Β] (Sound A). However, the second rule means that
the vowel ˘е is replaced by Ħ when in the KCC
which contains the vowel has the A sound and there

is no other vowel in the KCC.

Due to its similar pronunciation, the KCE of the

three words ₤еЮŲ₣ ₤еЮΌ₣ ₤ЮĦų₣ must be the same.
The KCE representing the three words are:

₤ЮĦų₣ = ₤ĦЮŲ₣
₤еЮŲ₣ = ₤ĦЮŲ₣ due to the first rule.
₤еЮΌ₣ = ₤ĦЮŲ₣ due to the second rule.

Therefore, when the user falls to write one of the

above sets, it is treated as the same.

Note: Khmer subscript is the combination of

two Unicode character, \u17D2 and the consonant

representing the subscript. In the process of building

the KCE, all the subscript is represented only by the

corresponding consonant. It is very advantageous for

solving the transformation from TAMROUT words

into SAMRAY words and vice versa.

3. Experiment Result

As an experiment on the capacity of the

approach, we collected some test sets by assigning

some of our team to copy texts from textbook and

newspaper. Some test sets are collected from the

web. Therefore, homophonous error can be

collected. Below is the result:

Total number of words in the test set=8956

Total Number of homophonous misspelling=436

Number of error correctly detected=403

4. Conclusion and Further Work

This paper described an approach for the

detection and correction of homophonous non-word

errors for Khmer language using the Khmer

Common Expression KCE. The introduced approach

has achieved a good result. However, it also raised a

few ambiguities problems for word segmentation

because rule based technique is used in the

disambiguation module in this research.

For Khmer, plenty of work also has to be done

to improve both the performance and accuracy of

automatic detection and correction of error words.

There is a need to:

- Improve the KCE rules to advance the accuracy

of the sound-similarity error words.

- Combine the current method with other different

method to enable the non-homophonous errors

detection such as keyboard adjacent errors and

so on.

- Enable the ability to detect the real word errors

so that we need to build contextual information.

- Use statistical based approach to improve the

quality of the segmentation since there is no

word boundary in Khmer sentence. Therefore,

some ambiguity issues that is raised by the KCE

approach is solved.

Rate =

= (403/436)*100%= 92.43%

No. of errors correctly detected

Total number of misspelling

Khmer

 248

5. Acknowledgement

We would like to express our gratitude to Dr.

Khin Sok for his helpful explanation on Khmer

language grammar to our research programmer. We

also would like to thank to the Royal Academy of

Cambodia for their support and suggestion on Khmer

linguistic during our research on the project.

6. References

[1] A.B.A. Abdullah and A. Rahman, “A Generic

Spell Checker Engine for South Asian Languages”,

Research Report, Computer Science & Engineering,

BRAC University, Dhaka, Bangladesh.

[2] C. Nath, Dictionnaire Cambodgien, Edition de

L’institut Bouddhique, Phnom Penh, 1967.

[3] K. Sok, Khmer Language Grammar, First

Edition of Royal Academic of Cambodia, 2004

[4] L. Zhang, M. Zhou, C. Huang and H. Pan,

“Automatic Detection/Correction errors in Chinese

text by an approximate word-matching algorithm”.

[5] P.K. Wong, and C. Chan, “Chinese Word

Segmentation based on Maximum Matching and

Word Binding Force”, Research Paper, Department

of Computer Science, The University of Hong

Kong, Hong Kong.

[6] S. Bing and Y. Shiwen, “A Graded Approach for

the Efficient Resolution of Chinese Word

Segmentation Ambiguities”, Institute of

Computational Linguistics, Peking University,

Beijing 1 00871, China.

[7] T. Naseem, “Spelling Checker”, slides available

online at:

http://www.panl10n.net/Presentations/Afghanistan/U

rduSpellChecking.pdf.

