
Research Report on PDA Localization

Rajiv Bd. Jonchhay, Prajol Shrestha, Bal Krishna Bal

Kathmandu University, Madan Puraskar Pustakalaya, Nepal

john.rajiv@gmail.com, prajol@mpp.org.np, bal@mpp.org.np

Abstract

This document is a research report on the Personal

Digital Assistant (PDA) localization conducted by

Madan Puraskar Pustakalaya in collaboration with

Kathmandu University. The whole localization process

had been divided into two phases, research and

development. This document provides an overview of

the activities conducted in the two phase thus giving a

broader picture of the PDA Localization process.

1. Introduction

The localization of handheld devices is appealing

and at the same time challenging as handheld devices

do not necessarily comply to the resources used by

computing devices used at home or office.

Development of any application for handheld devices

should be guided by several factors like the reduced

screen size, memory and other specific factors. Madan

Puraskar Pustakalaya in collaboration with Kathmandu

University conducted the PDA Localization under the

PAN Localization Project. In the sections that follow,

the complete process of PDA Localization is

documented.

2. Research on the Existing PDA

Technologies

The very first task that was undertaken in PDA

Localization was a research on the existing PDA

Technologies. Under this topic, the basic information

on PDA devices and the operating environment

available in the PDA was researched. Given below are

the findings of the study.

3. What is a PDA and What are its

Functions?
By Personal Digital Assistant (PDA) , we

understand a device that can do a lot of things that a

computer can do, but it is in a condensed version. All

PDAs have some form of personal information

management (PIM) software which is responsible for

handling the organization of the following tasks [1] :

• Storing contact information

• Develop to-do lists

• Make notes

• Tracking appointments

• Reminding appointments

• Performing calculations

4. Running Application Software in the

PDA

PDAs have the capability of running specialized

software applications. These can be programmed by

the programmer and according to the compatibility of

the PDA devices they can be loaded in the respective

devices [2]. Some of the most common applications

are Office like applications (DataViz Documents to

Go), multimedia (palmOne Media), e-mail

(VersaMail), webbrowsing software etc. Others

include gaming software, billing and timing software

[1]. The application programs and database objects are

of the format (extensions) “.prc” and “.pdb”

respectively.

5. Synchronization with PCS

Owing to the fact that PDA's are designed to

complement PC, the information in both of these

devices should be up-to-date and hence

synchronization of information should take place. For

this purpose, a synchronization software on the PDA

works in co-ordination with the companion software

installed on the PC [1] .

6. Other Existing PDA Functions

In most PDAs, today, wireless and multimedia

functions of some type are incorporated. Some of these

functions available on most devices are as follows [3] :

Working Papers 2004-2007

 437

• Short-range wireless connectivity through

Infrared (IR) or Bluetooth technology .

• Internet and corporate network connectivity

using Wi-Fi and wireless access points.

• Support for Wireless WAN (Wide Area

Networks)

• A memory card slot accepting flash media

such as CompactFlash, MultiMediaCard etc.

• Audio support for MP3 files and audio

devices.

• A built-in digital camera

• Integrated security features like a biometric

fingerprint reader.

• In-built GPS capabilities.

7. Existing Operating System

Environment for PDA

Both proprietary and open source operating system

environments exist for PDA.

8. Proprietary Operating System

Environments

In the proprietary world of operating system

environment for PDA, the Palm OS and Windows

Pocket PC have been chief sellers in the world. Below

in Table 1, we try to list down some of the available

features of the Palm OS and Windows Pocket PC.

Table 1. PDA Devices with proprietary software

Models with Pocket PC Models with Palm

OS

HP iPaq H4350 Palm Tungsten E

Toshiba Pocket PC e750 Sony Clie

Toshiba Pocket PC e335 Palm m125

HP iPaq H5550 Garmin iQue 3600

Toshiba Pocket PC e350

Dell Axim X5

9. Open Source Operating System

Environments

9.1. Qtopia:

Qtopia PDA Edition (Qtopia PDA) is the de facto

standard for Linux-based PDAs. It provides a stable

software platform for advanced mobile computing

devices from the new generation. As evident, Qtopia

runs in Linux and delivers cutting - edge functionality

[11] .

9.1.1. Qtopia features [12] :

• Windowing system

• Synchronization framework

• Development environment

• Localization support

• Games and multimedia

• PIM applications

• Input methods

• Personalization options

• Productivity applications

• Internet applications

• Java integration

• Wireless support

9.1.2. Technical Features of Qtopia PDA [12] :

9.1.2.1. Source Code:

The customers of all Qtopia PDA are liable to

receive the complete source code. Hence, he or she

may create custom applications that integrate with the

existing applications, and make compilations for using

on the certain processor.

9.1.2.2. Core Platform

The base platform provides a robust computing

environment aided with many useful behind-the-scene

features for the end-users in terms of integration of the

systems and modules. The manufacturers also may

easily add extra functionality. Some of these features

include input methods, adjustable screen size and

orientation, plug-in manager, application installation,

and wireless support.

9.1.2.3. Internationalization

As Qtopia PDA uses Unicode internally,

localization can be efficiently conducted for different

markets. In addition to this, the layout engine

automatically adjusts the size of the graphic user

Nepali

 438

interface elements like the buttons and labels, incase,

the size of the text on these elements are longer than

the original text of the source language.

9.1.2.4. Customization:

Qtopis PDA has a powerful theming engine. This

allows manufacturers to create custom branded user

interfaces and application launchers.

9.1.3. Major PDA Models implementing Qtopia

Among Linux based PDAs, the Zaurus is the most

popular and the most impressive. It costs less than

Palms, however, has a lot of potential [13] .

9.2. Sharp Zaurus SL-5600:

The Sharp Zaurus SL-5600 Personal Mobile Tool is

the most recently released in the 5000 series. Sharp has

undergone many hardware and software improvements

in the 5600 [14, 15].

For people wanting to achieve some more, it is also

possible to create a customized ROM image, develop

new applications, port already existing Linux

applications, use the available tools to connect to a

company database in the network wirelessly and

administer remotely. From this perspective, the

Zaurus 5600 is more than just a PDA, rather than a

tiny Linux computer [15] .

9.3. Sharp Zaurus SL-6000

The new version, SL6000, is a breakthrough for the

Zaurus. Among some of its features are the famous

C7xx crystal-clear screen, enablement of both Wifi

and Bluetooth etc. It also has a built-in, foldable

keyboard very much like the old SL5xxx series. The

most important features are portability,

standardization, sustainability, and flexibility [16].

9.4. Kaii PDA:

The Kaii PDA (personal digital assistant) has been

released by Informart, a Bangalore-based company.

The hardware design of the product comes from India

and the software comes from US-based Lineo. Kaii is

based on Lineo's Embedix, an embedded Linux

operating system [17].

 Kaii is 'double byte enabled' so that it can support

any language in the world. In addition to this, various

devices such as printers, keyboards, external hard disk

drives may be plugged into Kaii PDA [18].

 Nevertheless, research is still ongoing in terms of

the compatibility , flexibility and the GUI desktop

issues of Kaii PDA . It is still unclear whether it uses

Qtopis and whether it has full localization support or

not.

10. Choice of the PDA Model and the

Operating System Environment

Owing to the following factors, we have opted to

go for Sharp Zaurus model and Qtopia operating

system environment for the purpose of PDA

Localization:

1. From our study, it was found out that non-

proprietary operating environment Qtopia

comes up in third place in terms of wide

usage after the proprietary operating

environments, Palm OS and Pocket PC.

2. Among various Linux based PDA models, the

Zaurus is the most popular and impressive

PDA [13].

3. Resource bundle and other essentials required

for localization are not readily available for

proprietary operating environments.

11. Technical Specifications of Sharp

Zaurus SL-5500

11.1. Hardware :

Sharp Zaurus SL-5500 has the following hardware

specifications [19] :

CPU – 206 Mhz Intel SA-1110 Strong ARM

systems -on-chip processor;

Memory – 64 MB DRAM

Display – 3.5 inch 240 x 320 - dot pixel ("quarter

VGA") reflective TFT 65,536 color LCD with touch

panel support

Keyboard – front lighted QWERTY keyboard with a

slide cover

Dual card slots --

− Compact Flash Type II for memory or other

peripheral expansion;

− Secure Digital (SD) card slot for the secure

Working Papers 2004-2007

 439

memory storage or other peripheral expansion;

I/O Ports --

 -IrDA 1.2

 -Serial Port (via cradle)

 -USB (via cradle)

 -Stereo headset jack; includes audio input (mono)

PowerSource --

-Lithium ion battery (950 mAH)

-Battery life: 10 hr (back light off); ~1 hr (back light

on)

− Lithium battery preserves memory contents during

battery low condition; additional battery preserves

memory contents during battery change.

Size – 2.9 x 5.4 x 0.7 in. (with keyboard hidden)

Weight – 6.8 oz.

Bundled accessories: USB connected cradle; AC

adapter

11.2. Software :

Sharp Zaurus SL-5500 has the following software

specifications [19] :

Operating system – based on Lineo's Embedix

Embedded Linux with Linux Kernel 2.4.x

Java runtime environment – Insignia's Jeode PDA

Edition (a Sun-authorized Virtual Machine that is

compatible with the Personal Java Specification)

GUI – based on Trolltech's Qt/Embedded

Browser – Opera

Application software – based on Trolltech's Qtopia

PDA suite: includes productivity suite (todo list,

calendar, calculator, address book, text editor),

entertainment package (mpeg player, image viewer,

games), internet package (email client, web access),

utilities (screen calibration, backlight control, app

installer, network setup, I/O controls).

12. Flashing Zaurus ROM

Inorder to flash new operating system (OS) in the

Zaurus ROM the following steps need to be followed

[20] :

1. Plug in the cord to the Zaurus. You will find a hole

for the cord at the bottom right of the Zaurus when

held face up.

 2. Charge the machine for 10 minutes.

3. Flip over the Zaurus so that it is face down. Open

the back cover. (There is a gray switch in the bottom

right corner that is to the right of the words

"NORMAL OPERATION" and "REPLACE

BATTERY".) Locate the RESET button but do NOT

press it. It is in the square indentation to the left of a

gray button, just below the battery, and above the

words "NORMAL OPERATION" and "REPLACE

BATTERY".

4. Insert the compact flash card (which contains the

image file) at the top of the Zaurus.

5. Turn over the Zaurus so that it is face up. Pull down

on the bottom half of the top half of the Zaurus to

reveal a keyboard.

6. Simultaneously press the RESET button and the

letters C and D in the keyboard to reset the program.

This action will cause a green light (just above the

envelope icon) to turn on the face-up side of the

Zaurus just below the display screen (monitor).

7. Wait for few minutes until the green light turns off.

8. Replace the back cover of the Zaurus. Using the

gray switch, lock the back cover in place.

9. Press the power button on the front cover to see the

new program reloading. To make sure that you flashed

correctly, once you turn the Zaurus on, it should say

calibrating. To finish, simply tap the four corners of

the screen as instructed.

Note: We flashed Zaurus ROM with new ROM image,

which includes OpenZaurus 3.5.2 (with Linux Kernel

2.4.18-rmk7-pxa3-embedix-021129 kernel) as its

Operating environment and Opie 1.1.7 as GUI.

13. OpenZaurus:

The original purpose of the OpenZaurus Project was to

create a ROM image (Kernel + Root Filesystem). The

intention of the distribution is to continue to produce a

solid software distribution for the Sharp Zaurus SL-

5000d (eventually SL-5500 as an alternative to the

Nepali

 440

default distribution from Sharp. Binary compatibility

will be attempted to retain both to and from the Sharp

ROMs. This distribution is also targetted to be a bit

closer to the developer community, and will do its best

to take advantage of the closeness, by making use of

the assistance of any willing developers [21].

OpenZaurus provides 16MB of built-in Flash

separate from the 64MB of memory, which is split

into the SL-5500, 32MB for storage and 32MB for

heap. The heap memory also can be written to,

allowing you to add and remove applications that you

can't be manipulated in the Sharp ROM. The most

important thing is that OpenZaurus offers freedom of

choice [22].

14. OPIE

OPIE, whose full form is the Open Palmtop

Integrated Environment is a 'fork' of Qtopia

environment developed by Trolltech. It is a completely

Open Source graphical user environment for PDA's

and other devices running Linux. The maintainance is

done by a group of people from all over the world,

convinced by the Open Source Policy. Opie uses

Qtopia greatly in an extended form thus establishing

itself as the most sophisticated free and open graphical

user interface for Linux based embedded devices and

PDAs.

Opie is furnished with a sophisticated personal

information (PIM) framework and at the same time

possesses several productivity applications. It also has

extended multimedia capabilities, dcument model,

networking and communication tools, multi-language

support for more than a dozen languages etc. Opie

efficiently interacts with lots of devices from cell

phones to server back ends. Opie is based on common

industry standards like XML, Obex, IrDa etc. [23].

14.1. Qt/Embedded

The Qt/Embedded product provides all that is

required to create the graphical user interfaces for

embedded Qtopia.

Qt/Embedded is installable and runnable with a

very small memory on any device running embedded

Linux at the same time not using X11. Qt/Embedded

has the same API as the popularly used Qt/Windows

and Qt/X11 versions. So this saves a lot of time incase

of moving applications developed in a particular

desktop environment . Additionally, only recompiling

is required.

Qt is undoubtedly the most popular GUI toolkits in

the world. It is preferred by programmers for its

compact code, powerful API, ease of use and the

excellent support [25].

14.2. Opie compilation for x86 and ARM:

Below is a list of software tools required to compile

OPIE [26] :

1. uic-qt2

2. qvfb-qt2

3. qt-embedded-2.3.10-free.tar.gz

4. Stable Opie Source

14.3. Additional tools required to compile

OPIE for ARM processor

To compile OPIE source under Linux for targeted

device, it need a cross compiler (toolchain). The

toolchain required for the cross compilations are [27] :

1. Cross Compiler (gcc)

2. Libraries (glibc)

3. Utility Tools (other than gcc)

4. Header Files

 So, we downloaded the following toolchain for

Sharp Zaurus

 1. binutils-cross-arm-2.11.2-0.i386

 2. gcc-cross-sa1100-2.95.2-0.i386

 3. glibc-arm-2.2.2-0.i386

 4.linux-headers-arm-sa1100-2.4.6-3.i386

14.4. Additional libraries and header files

Required to compile OPIE for ARM

processor [28]

 1. {libjpeg62,libjpeg62-dev}_6b-

5_arm.deb

 2. {libfreetype6,libfreetype6-dev}_2.0.9-

1_arm.deb

 3. {zlib1g,zlib1g-dev}_1.1.4-

1.0woody0_arm.deb

 4. {libpcap0.7,libpcap0.7-dev}_0.7.2-

7_arm.deb

 5. {libpng3,libpng-dev}_1.2.1-

1.1.woody.9_arm.deb

Working Papers 2004-2007

 441

 6. {libbluetooth1,libbluetooth1-

dev}_2.11-1_arm.deb

 7. {libgcc1_3.0.4-7_arm.deb

 8. {libpcsclite1,libpcsclite-dev}_1.2.9-

beta6-1_arm.deb

 9. flex_2.5.4a-24_arm.deb

 10. libpam0g-dev_0.76-

9_arm_for_Opie.tgz

14.5. Additional Tools Required to compile

OPIE for x86 processor

 1. {libbluetooth1,libbluetooth1-dev}_2.15-

2_i386.deb

 2. {libfreetype6, libfreetype6-dev}_2.0.9-

1_i386.deb

 3. {libjpeg62, libjpeg62-dev}_6b-

5_i386.deb

 4. libpam-unix2_1.25-1_i386.deb

 5. {libpcsclite0,libpcsclite-

dev}_1.0.2.beta5-1_i386.deb

 6. {libpng3, libpng-dev}_1.2.1-

1.1.woody.9_i386.deb

 7. pkg-config_0.20-1_i386.deb

 8. zlib1g_1.1.4-1.0woody0_i386.deb

 9. zlib1g-dev_1.2.3-9_i386.deb

The compilation procedure for both x86 machine

and ARM machine is included in the APPENDIX

section.

14.6. Translation of OPIE

The Opie-Project tries to offer the support for as

many languages as possible.To ensure that Opie can be

used by as many people as possible the Opie-project

aims to translate OPIE in as many languages as

possible. Since OPIE is an evolving project, OPIE files

and consequently files to be translated keep on adding

and hence the translation would need to be constantly

updated.

In order to translate Opie files, an editor

(translation tool) is required to edit the translation file.

It could be any tool preferably supporting UTF8. The

preferred editors are QtLinguist, KBabel etc.

14.7. Steps for translating OPIE into the native

language [29]

� To create a new language entry, a folder of

any name (language name) should be added

in the $OPIEDIR/i18n/ directory.

� After the entry of the new language, create a

file opie-i18n-

desired_language_name.control in the

directory $OPIEDIR/i18n/

� Then create .directory file, which includes the

name of the desired language, and create the

array of its name to be appeared on other

different language attributes.

� Run the command opie-lupdate or add .ts files

manually.

o Opie-lupdate - opie-lupdate is an

specialized version of Qt3.1 lupdate.

� You do not need TRANSLATIONS

in your .pro anymore. Opie

� lupdate reads the language list from

$OPIEDIR/i18n and then generates

the .ts files.

o opie-lrelease - Also deprecates the

TRANSLATIONS attribute inside the

.pro files

� The translation sources are located in the *.ts

files. *.qm files are generated during another

part that needs to be translated in the Desktop

and .directory files, found in the OPIE

directory tree.

� After translation in the respective language is

complete, Font containing that particular

Unicode characters need to be installed or

created for OPIE.

Font format of PDA is .qpf (packed font).

The program that is used to create these fonts

is "makeqpf". The tool “makeqpf” could be

used to change the font in TTF & BDF format

to PDA compatible fonts (QPF).

The method to install new font in PDA is

included in the APPENDIX section

14.8. OPIE file format

The OPIE files for translation come under the *.ts

format. A typical example of the .ts file format is

presented below:

Nepali

 442

<message>

 <source>Application</source>

 <translation>अनुूयोग</translation>
 </message>

 <message>

 <source>Settings</source>

 <translation>से
ट�गह�</translation>
 </message>

 <message>

 <source>Pim</source>

 <translation type=”unfinished”></translation>

</message>

To briefly explain the format of the .ts file, it is a

simple markup file with few important tags like

"source" and "translation". The string to be translated

is enclosed within the tags "source" whereas the

translation appears in between the tags "translation". If

some strings are untranslated, an additional attribute

type ="unfinished" appears in the tag "translation" as

evident above in the example. Translation tools like

Kbabel facilitate an easy mode of translating the

strings by grouping the strings to be translated in the

upper part of the window and the actual translation

string input in the lower half. Both the strings to be

translated and the translation for the strings may be

navigated with the help of the available navigation

tools.

14.9. Getting the OPIE interface in Nepali
language

Once the translation of OPIE files is complete, the

following steps are required to get the OPIE interface

in the Nepali language.

Tap on the Settings tab,

you’ll get the screen as

shown.

Tap on the

Appearance Icon,

you’ll get the screen

as shown.

Tap on the Font tab,

you’ll get the screen as

shown. Then tap on the

‘Sam’ font and select the

appropriate Size and

Style and then tap on

‘OK’ button on the right

top of the screen. This

changes the whole

interface to be appeared

on ‘Sam’ font.

4.

Again go to

‘Settings’ tab and

Tap on the

‘Language’ Icon,

you’ll get the screen

as shown.

Now, select ‘Nepali’

language and tap on

‘OK’ button on the

right top of the

screen. After few

seconds you’ll get

the interface

changed into

‘Nepali’ language.

Note: ‘Sam’ is the font created by the PDA

localization Nepali team (by modifying ‘Mangal’ font

and adding English characters onto it), which consists

of all the English characters, Basic Symbols and

Nepali Characters.

Some screenshots of OPIE interface in Nepali

Language

Fig. 1. ‘PIM’ tab

Fig. 2.

‘Application’

tab

Fig. 3. ‘Settings’ tab

Fig. 4. ‘Text

Editor’ program

Working Papers 2004-2007

 443

15. Problems

Proper rendering of the Nepali script was not

achieved. This turns out to be the major limitation of

the project. Although attempts were made to correct

the existing rendering problem by contacting the OPIE

developers community, concrete results were not

achieved.

Fig. 5. ‘Text Editor’

program showing ‘File’

menu

Fig. 6. ‘Text Editor’

program with input

‘कककक’

Customization of the existing input schemes of the

16. PDA into Nepali

After the relatively successful customization of the

PDA interface into Nepali, efforts were made in the

customisation of the existing input schemes for the

PDA. This involved customizing the virtual keyboard,

an input facility existing in the PDA and doing some

basic research on the handwriting recognition part

concerning the input through the stylus.

17. Brief overview of the input schemes

available

17.1. Keypad

Every Pda has a reduced keyboard for the input.

The user can directly use the keys to provide the input

to the PDA. It is just as the layout for the normal

keyboards but in the reduced format.

17.2. Multikey

MultiKey is like the virtual keyboard to the PDA,

which appears at the bottom of the screen with all the

corresponding keys associated with the specific letters,

functions and numbers.This is the input scheme that

provides the virtual keyboards to give the inputs. A

small icon is present at the bottom left corner and it

has a scheme for changing the type of the input. One

can select multikey environment and provide input

using virtual keyboard layout displayed on the screen

and press on the icons for the keys on the screen using

the pressure pen. Further illustrations and screen shots

will appear in the later section of this documentation.

17.3. Pickboard

It is quite similar to to the multikey environment

and providing input in a quite similar manner to

multikey (i.e. using pressure pen).

17.4. Handwriting

The Handwriting input mode recognizes stylus

strokes and converts them into letters, numbers and

symbols. The strokes are made with the help of the

pressure pen.

17.5. Customization of Multikey environment

“Multikey” input method is a purely customizable

input method where every key of the virtual keyboard

can be mapped with the corresponding characters,

functions and numbers to that of Nepali Unicode

Romanized Layout.

Fig.7. Nepali Unicode Keyboard Layout

(Romanized) for normal keyboard.

As evident from the discussion above, the same layout

Nepali

 444

presented above has been implemented in the

"Multikey" input environment.

Steps for enabling the native language input

(Nepali) [33]

1. Copy en.keymap to be template for your new

keyboard.

cp /opt/QtPalmtop/share/multikey/en.keymap

/opt/QtPalmtop/share/multikey/np.keymap

np.keymap shall be changed to your own

country(nepali in our case).

2. Edit content of np.keymap

comment lines must start with a '#' (for now...)

order is: row qcode unicode length blah

please don't write anything between a key definition

and its xpm (except for s

title = English

sw = EN

i. Change Title and sw to your own language. (sw is

shown at taskbar)

In our case we made Nepali keyboard as

title = Nepali

sw = NP

ii. Then change the contents as wish

1 0 0x60 2 # but not after xpm images...

k?want after the last element

1 0 0x31 2

1 0 0x32 2

1 0 0x33 2

1 0 0x34 2

1 0 0x35 2

1 0 0x36 2

1 0 0x37 2

1 0 0x38 2

1 0 0x39 2

1 0 0x30 2

1 0 0x2d 2

1 0 0x3d 2

1 0x1003 0 2

1 0 means first row of keyboard. you and see that it

ascii code of `1234567890-

Likewise 2 0 is second row 3 0 is third row 4 0 is forth

row

You now then have to know your language ascii or

unicode. Then replace it as you want.

Ascii is number that less than 0xff. Unicode is number

that have more than 2 digits such as 0x967

Feel free to change trial and error until you satisfy with

new keyboard.

iii. After you finish keyboard with out shift. Now

you have to modify to have shift key

shift table

add xpm support for these keys too?

unshifed shifted

0x60 0x7e

0xe45 0x2b

0x2f 0xe51

0x2d 0xe52

0xe20 0xe53

iv. Just change the number behind first number to

get shift key

Here is the small piece of the file illustrating above

facts:

This is for the first row ie for १२३४५……

1 0 0x967 2

1 0 0x968 2

1 0 0x969 2

1 0 0x96A 2

1 0 0x96B 2

1 0 0x96C 2

1 0 0x96D 2

1 0 0x96E 2

1 0 0x96F 2

1 0 0x966 2

1 0 0x2d 2

1 0 0x3d 2

1 0x1003 0 2

Working Papers 2004-2007

 445

Now here is the small sample for the shifted keys.

unshifted shifted

0x91F 0x921

0x94C 0x914

0x947 0x948

0x930 0x943

0x924 0x925

0x92F 0x91E

0x941 0x942

0x93F 0x941

0x94b 0x913

0x92A 0x92B

0x907 0x908

0x90F 0x910

0x950 0x903 … similarly you may proceed for other

keys.

v. What if the character does not get displayed on

the keyboard?

There might be the case where the character

associated with the keys of keyboard is not actually

displayed on the keyboard i.e. key appears blank.

In that case, OPIE offers a feasible way to

represent the corresponding key to its mapping using

the drawing technique in terms of matrix

representation. In drawing technique, one needs to edit

the file “np.keymap” for Nepali Input to represent how

the display exactly looks like for the particular keys.

Eg:

1 0x1000 0 2

 "9 9 2 1"

 ". c None"

 "a c #000000"

 "........."

 "........."

 ".aa.aa.aa"

 ".a..a..a."

 ".aa.aa.a."

 ".a...a.a."

 ".aa.aa.aa"

 "........."

 "........."

Here, the first line indicates the position and the

Unicode value of the corresponding key. ‘1’ in first

line indicates that the position is “Row-1”, and the

Unicode value is “0x1000” which represent “ESC”

character. In this case, as the key “ESC” does not have

any representation on the Unicode mapping to actually

represent it. So, we need to draw its representation

which indicates it as “ESC” characters i.e. we need to

draw the “ESC” on the key that need to be displayed.

"9 9 2 1”: ‘9’ represent number of rows

 ‘9’ represent number of columns

". c None" : this indicates ‘.’ is the blank or simply of

color white.

"a c #000000" : this indicates ‘a’ is colored to black

This now forms 9x9 matrix, and a complete display

is represented in this representation, where the pattern

of ‘a’ colors the pixels into black on the background of

white i.e. ‘.’. So, inorder to draw a desired character or

words that is to be displayed in the keyboard, one

needs to manipulate the pattern of ‘a’ and ‘.’ to draw

them in a complete matrix representation.

Using this technique, we represented many

characters to be displayed in the keyboard.

◌े is represented as below:

2 0 0x947 2

"9 9 2 1"

 ". c None"

 "a c #000000"

 ".a......."

 "..a......"

 "...a....."

 "...aaa..."

 "........."

 "........."

 "........."

 "........."

 "........."

Where, 0x947 is the Unicode value for ◌े.

Nepali

 446

18. Customization of the Existing

Handwriting Recognition Feature on

PDA for Nepali

18.1. Handwriting

The Handwriting input mode recognizes stylus

strokes and converts them into letters, numbers and

symbols. To use this mode, you will need to adapt your

handwriting style slightly to the way Opie expects

characters to be drawn, and you enter characters on the

spot (rather than moving your position as you write, as

you do when you write on paper).

The handwriting area is split up into three parts

from left to right - upper case letters (marked ABC),

lower case letters (marked abc), and numbers and

symbols (marked 123). There are four buttons to the

right of the handwriting area - backspace, enter, help,

and settings (pen icon).

 Figure 8. Input Areas

18.2. Training

A good way to learn how to use the handwriting

input mode is to use the trainer. To access the trainer,

tap on the help button (? icon) and select the Trainer

tab. Select each character in turn - Opie will show you

an animation of how to draw the character on the left.

Try writing the character in the test area on the right,

and Opie will tell you how accurately it is able to work

out which character you just drew.

You will get the best results if you draw characters

similarly to the way they are drawn in the animated

example.

Figure 9. Training

18.3. Settings

Other than the Customize tab, there are just two

settings you can change here - the multi-stroke

character timeout (the time allowed between strokes to

enter a multi-stroke character, eg. f); and the splitting

of the handwriting area - you may choose to have a

two-part area (toggling between upper/lower case in

the letter side).

Figure 10. Timeout adjustment (Multi-stroke

character timeout)

18.4. Customize

If you wish, you may edit the strokes used to enter

text in the handwriting input method on the

Customize tab. Choose the character set you wish to

edit from the drop-down list. You can select a

character from the list, and see the strokes associated

Working Papers 2004-2007

 447

with it using the arrow button (if there is more than

one). Use the actions below to perform your editing.

18.5. Adding a new stroke

To add a new stroke to an existing character (a

different way of entering the same character), draw it

carefully in the entry area at the bottom of the screen,

and then press "Add". If you make a mistake, press the

Clear button and start again.

18.6. Adding a new character

To add a new character (one not already in the list),

draw it carefully in the entry area at the bottom of the

screen, and then press "New...". If you make a mistake,

press the Clear button and start again.

18.7. Removing strokes
To remove a stroke from a character, use the arrow

buttons to select press the Remove button

18.8. Resetting a character

To reset the selected character's strokes back to the

defaults, press the Default button.

 Figure11.

Customizing

Handwriting Input

Figure 12. Enter

New Character

19. Research on handwriting recognition

After having worked with the training of basic

Nepali characters as input with the help of stylus and

pressure-sensitive pad of the PDA,

Optical Character Recognition over the years has been

one of the hottest topics for research in the field of

computing. Various researches have been performed

and various outcomes have resulted. We find different

algorithm in the fields that compete against each other

in terms of efficiency and reliability.

Handwriting recognition problems are categorized

into two types, viz., online and offline. Incase of

online recognition systems, a pressure-sensitive pad

records the pen's pressure and velocity (for example, a

PDA). On the other hand, in offline recognition, the

system input is a digital image of handwritten letters

and numbers [30] .

19.1. On-line Character Recognition

 Alphabet character recognition takes an input

character and assigns it as one of the possible output

classes. The process comprises two general stages:

feature selection and classification. Feature selection

is considered to be a very critical stage to the whole

process as correct recognition is not possible from

poorly selected features. The task of feature selection

is often done by the researcher manually, but a neural

network approach automatically extracts the relevant

features [31] .

 Figure 13. Examples of off-line(left) and on-

line(right) handwriting inputs

19.2. On-line vs. Off-line

A raster image is taken from a scanner, digital

camera or other digital input source incase of offline

character recogniton. The input image is binarized

(digitized) using a threshold technique (image pixels

are either on (1) or off (0)). Rest of the preprocessing

is similar to the on-line version with two prime

differences: Off-line processing deals with scanned

image of complete written characters. Off-line inputs

do not have temporal information associated with the

image (relationships between pixels or the order of the

creation of strokes cannot be inferred).

On the other hand, on-line character recognition

accepts (x,y) co-ordinate pairs from an electronic pen

touching a pressure-sensitive digital tablet. In this case,

processing takes place in real-time. Relationships

between pixels and strokes also are taken into account

[31] .

Nepali

 448

Figure 14. Result of each processing for the given

input

19.3. Feature Extraction

A feature point is a point of human interest in an

image (intersection between two lines, corner, dot

surrounded by space etc.) The relationship between

different strokes is defined by such points. These

relationships are used for character identification and

the feature points are used for the task.

The feature points are extracted by using certain

algorithms. For example, consider an eight by eight

character consisting of only sixty-four pixels. It is

viable to simply loop through the entire character and

examine each pixel in turn. If a pixel is on, its eight

neighbors are checked. Since each neighbor can also

only be on or off, there are 256 possible combinations

of neighborhoods. Out of these 256, fifty-eight are

found to represent significant feature points in a fairly

unambiguous manner. Extracting feature points thus

reduces to calculating a number between zero and 256

to describe a pixel's neighborhood and then comparing

that number against a table of known feature points.

This method does not always catch every feature point

(some can only be seen in a larger context) but it

catches the majority.

Extraction of feature points alone cannot help

identify characters. In this regard, a database of

characters and their associated feature points is a must.

This will help comparing the results of the extracted

features of an unkonown character against real

characters [32].

Figure 15. Stroke Correspondence

These are the basic procedures adapted in handheld

devices to recognize the handwriting input.

20. Conclusion

The scope of the PDA Localization project

undertaken by the Nepal component of the PAN

localization project was initially only to localize the

basic PDA interfaces. Hence the customization of the

input parts followed by a small research on

handwriting recognition was something done in

addition. All the processes involved in PDA

localization starting from the study of the existing

PDA technology to the choice of the operating system

and the model for customization, localization and

translation procedures thoroughly covered during the

research and development of PDA localization have

been duly documented in the report. Technical details

on some specific portions like compilation and

building are presented in the Appendix section.

Working Papers 2004-2007

 449

21. References

[1] http://electronics.howstuffworks.com/pda.htm/prin

table

[2] http://www.howstuffworks.com/pda.htm/printable

[3] http://www.bollywoodstuff.info/index2.html

[4] “Cell phone: Cell Phone, Mobile Phone Reviews,

Wireless Phones - CNET”

http://reviews.cnet.com/Handhelds/2001-3127_7-

0.html?tag=cnetfd.glnav

[5] “ACESS” http://www.palmsource.com/palmos/

[6] “Symbioforge” http://www.symbioforge.com/feii/

[7] “PiLoc Download Wizard”

http://piloc.penreader.com

[8] http://TwinyPalm.com

[9] http://www.w3c.org/TR/1999/REC-html401-

19991224/loose.dtd

[10] “Sharp Zaurus SL-5600 Personal Mobile Tool”

http://www.linuxjournal.com/node/6792/print

[11] “Code Less Create More”

http://www.trolltech.com

[12] http://ftp.trolltech.com/products/qtopia/index.html

?cid=21

[13] http://www.linuxdevcenter.com/pub/a/linux/2004/

01/29/zaurus.html

[14] http://schockwellenreiter.server-

wg.de/blog/daylist_html?year=2004&month=2&d

ay=6

[15] http://xiongxiong.com/htm/Developer/DevelopNe

ws/2004225C104254.html

[16] http://www.lisoleg.net/cgi-

bin/lisoleg.pl?view=news/messages/msg.3541

[17] http://www.kaii.info/BusinessLine.htm?hl=en&lr=

&ie=UTF-

8&num=10&q=related:www.blonnet.com/2002/0

8/20/stories/2002082001210700.htm

[18] http://www.thehindubusinessline.com/2002/08/20/

stories/2002082001210700.htm

[19] http://216.218.185.154/articles/AT2134869242.ht

ml

[20] http://dev-

bywater.media.mit.edu/wiki/borglab/Flashing_the

_Zaurus_ROM

[21] http://www.linuxdevices.com/news/NS260543659

3.html

[22] http://new.linuxjournal.com/node/7866

[23] http://opie.handhelds.org/overview.php

[24] http://theqtopian.net/Xoops/modules/news/print.p

hp?storyid=7&

[25] http://216.218.185.154/cgi-

bin/printerfriendly.cgi?id=PD9968824320

[26] http://www.bigbridgezau.sakura.ne.jp/wiki.cgi?pa

ge=Qtopia-free-

1.7.1%A5%D3%A5%EB%A5%C9%B4%C4%B

6%AD%B9%BD%C3%DB

[27] http://www.uv-ac.de/opiedev/opiedev-4.html

[28] http://people.via.ecp.fr/~clem/nist/qt-notes.php

[29] http://en.pdamobiz.com/en/forum/forum_posts.asp

?TID=200&PN=1&get=last

[30] http://wearcam.org/ieeecomputer/0297abs.htm

[31] http://users.cs.dal.ca/~mheywood/Reports/TKlasse

n.pdf

[32] http://www.ccs.neu.edu/home/feneric/charrec.html

[33] http://en.pdamobiz.com/en/forum/forum_posts.asp

?TID=171&PN=1&get=last

[34] http://people.via.ecp.fr/~clem/nist/qt-notes.php

[35] “Guide to the Qt Translation Tools”

http://doc.trolltech.com/qtopia2.1/html/linguist-

manual.html

[36] “Zarus Software Index”

http://www.killefiz.de/zaurus/showapps.php?cat=6

[37] “News-Opie ”http://opie.handhelds.org/cgi-

bin/moin.cgi/

[38] http://www.zaurus.com/dev/tools/other.htm

Nepali

 450

[39] “CreateFontsForOpie-

Opie”http://opie.handhelds.org/cgi-

bin/moin.cgi/CreateFontsForOpie

[40] “Open Palmtop Integrated Environment (Opie)”

http://opie.handhelds.org/overview.php

[41] “Opie development-PDA development for

Compaq IPAQ and Sharp ZAURUS: Getting

started” http://www.uv-ac.de/opiedev/opiedev-

4.html

[42] “Heaton Research: Java Tutorials, Neural

Networks and More”

http://www.heatonresearch.com

22. APPENDIX

1. Compile OPIE from source for ARM and x 86

platforms

After qt-embedded and opie source had been

downloaded. It was extracted with appropriate

command through the terminal.

2. Set up build environment

Build environment were then set after qt-embedded

and opie source had been extracted.

cd ~/opie

export OPIEDIR="$(pwd)"

cd ~/qt-embedded

export QTDIR="$(pwd)"

3. uic compiler

In order to compile Opie, QT/Embedded need to be

built. But in order to compile QT/Embedded, QT/X11

uic compiler is needed. That compiler is needed to

"translate" UI files (user interface files, created with

qt2-designer, the layout designer from TrollTech) to
cpp files.

The easiest way is to download this file (statically

compiled) from http://vanille.de/tools/uic-qt2

Now its permissions need to be changed to make it

executable.

chmod u+rx uic-qt2

4. qvfb

To run Opie on x86 linux plateform, qvfb (Qt Virtual

Frame Buffer) is needed. It could be downloaded , as

for uic, from http://vanille.de/tools/qvfb-qt2

Now its permissions need to be changed to make it

executable.

chmod u+rx qvfb-qt2

5. Link/move QT/X11 tools

uic-qt2 is now linked to the QT/Embedded binary

folder

cd $QTDIR

mkdir bin

ln -s path_of_uic-qt2 bin/uic

same for qvfb

ln -s path_of_qvfb-qt2 bin/qvfb

6. Patch and stuff

linked to QTE config-file

ln -s $OPIEDIR/qt/qconfig-qpe.h src/tools/

patch Qt/Embedded to work correctly with Opie and

remove some Qt/Embedded errors

patch -p1 < $OPIEDIR/qt/qt-2.3.10.patch/qte-2.3.10-

all.patch

To compile OPIE for ARM processor

To compile OPIE source under Linux for targeted

device, it need a cross compiler (toolchain). The

toolchain required for the cross compilations are:

� binutils-cross-arm-2.11.2-0.i386

� gcc-cross-sa1100-2.95.2-0.i386

� glibc-arm-2.2.2-0.i386

� linux-headers-arm-sa1100-2.4.6-3.i386

These are RPM files, so could be easily installed.

Working Papers 2004-2007

 451

Additional libraries and header files Required to

compile OPIE for ARM processor:

� {libjpeg62,libjpeg62-dev}_6b-5_arm.deb

� {libfreetype6,libfreetype6-dev}_2.0.9-

1_arm.deb

� zlib1g,zlib1g-dev}_1.1.4-1.0woody0_arm.deb

� {libpcap0.7,libpcap0.7-dev}_0.7.2-7_arm.deb

� {libpng3,libpng-dev}_1.2.1-

1.1.woody.9_arm.deb

� {libbluetooth1,libbluetooth1-dev}_2.11-

1_arm.deb

� {libgcc1_3.0.4-7_arm.deb

� {libpcsclite1,libpcsclite-dev}_1.2.9-beta6-

1_arm.deb

� flex_2.5.4a-24_arm.deb

� libpam0g-dev_0.76-9_arm_for_Opie.tgz

are then extracted and the library files are then placed

on the arm-linux/lib directory of the cross-compiler

directory and the header files are then placed on the

arm-linux/include directory of the cross-compiler

directory.

Now the path is needed to be set correctly.

export LD_LIBRARY_PATH=directory of cross-

compiler/arm-linux/lib:$LD_LIBRARY_PATH

export PATH=directory of cross-compiler/arm-

linux/bin:$PATH

22.1. Building Qt for Opie (ARM target)

./configure -qconfig qpe -depths 4,16,24 -xplatform

linux-sharp-g++ -no-qvfb -system-jpeg -system-

libpng -gif -system-zlib -vnc -no-xft

make

Once Qt is built, set the PATH to it:

export PATH=$QTDIR/bin:$PATH

22.2. Configure and make opie

cd $OPIEDIR

make clean

make menuconfig //select or deselect the application

to be installed

make

22.3. To compile OPIE for x86 processor

Additional libraries and header files required to

compile OPIE for x86 processor:

• {libbluetooth1,libbluetooth1-dev}_2.15-

2_i386.deb

• {libfreetype6, libfreetype6-dev}_2.0.9-

1_i386.deb

• {libjpeg62, libjpeg62-dev}_6b-5_i386.deb

• libpam-unix2_1.25-1_i386.deb

• {libpcsclite0,libpcsclite-dev}_1.0.2.beta5-

1_i386.deb

• {libpng3, libpng-dev}_1.2.1-

1.1.woody.9_i386.deb

• pkg-config_0.20-1_i386.deb

• zlib1g_1.1.4-1.0woody0_i386.deb

• zlib1g-dev_1.2.3-9_i386.deb

are then extracted and the library files are then placed

on the lib directory of the /usr directory and the header

files are then placed on the include directory of the

/usr directory.

22.3.1. Building Qt for Opie (x86 target)

./configure -qconfig qpe -depths 4,16,24,32 -system-

jpeg -system-libpng -system-zlib -no-xft -qvfb

make

Once Qt is built, set the PATH to it:

export PATH=$QTDIR/bin:$PATH

22.3.2. Configure and make opie

cd $OPIEDIR

make clean

make menuconfig //select or deselect the application

to be installed

make

22.3.3. Setup opie

export QTDIR=~/qt-embedded

export OPIEDIR=~/opie

export

LD_LIBRARY_PATH=$QTDIR/lib:$OPIEDIR/lib

export PATH=$QTDIR/bin:$OPIEDIR/bin:$PATH

export QWS_DISPLAY=QVFb:0

Nepali

 452

qvfb

qpe

22.3.4. Methods for creating and installing

new fonts on PDA [33] :

• makeqpf was downloaded:

http://moria.ionkov.net/zaurus/makeq

pf/makeqpf-arm.zip
• unzipped we get file makeqpf-arm

• copy to /usr/bin

• # cp /mnt/card/makeqpf-arm /usr/bin

• # chmod +x /usr/bin/makeqpf-arm

• Get ttf font

• Copy that font to /opt/QtPalmtop/lib/fonts
• example: # cp /mnt/card/tahoma.ttf

/opt/QtPalmtop/lib/fonts

• Modify file: fontdir to have contents as

• tahoma tahoma.ttf FT n 50 0 su

70,80,100,120,140,160

• Some Meaning:

• FT is for ttf file, BDF is for bdf file

• n is not italic (y is italic)

• 50 is normal, 75 is bold

• 70,80,100.... is the font size start from

7,8,10,12,14,16

• Run following command (some error message

but no problem)

• # makeqpf-arm -A -f

/opt/QtPalmtop/lib/fonts/fontdir

• # makeqpf-arm -A -display

Transformed:Rot90 -f

/opt/QtPalmtop/lib/fonts/fontdir

• # makeqpf-arm -A -display

Transformed:Rot180 -f

/opt/QtPalmtop/lib/fonts/fontdir

• # makeqpf-arm -A -display

Transformed:Rot270 -f

/opt/QtPalmtop/lib/fonts/fontdir

• now restart opie, or

•

8. update fontdir file for new qpf files

• # update-qtfontdir

• Change default font at, Settings > Appearance

> Font > Tahoma > ok

Now your opie font change from Fixed to

Tahoma...

